Advertisement

International Journal of Clinical Pharmacy

, Volume 37, Issue 5, pp 682–686 | Cite as

Rash and multiorgan dysfunction following lamotrigine: could genetic be involved?

  • Alessio ProvenzaniEmail author
  • Manuela Labbozzetta
  • Monica Notarbartolo
  • Paola Poma
  • Piera Polidori
  • Giovanni Vizzini
  • Natale D’Alessandro
Case Report

Abstract

Case (description)

We report the case of a 38-year-old woman treated with lamotrigine who experienced multi-organ dysfunction. The patient received the drug at the dose of 100 mg per day. One week later, the treatment was suspended because of an extensive body rash. Twenty-four hours later, the patient appeared drowsy and stuporous and was hospitalized. On the fifth day, the patient was admitted with a clinical picture of acute multi-organ failure in our Institute, where, she, despite the support of vital functions with vasoactive drugs, continuous hemofiltration and ventilation with oxygen, died. Serum lamotrigine concentration was measured 110 h after its last dose and the drug resulted to be still present at 1 mg/L. The patient was homozygous for the UGT1A4-70C and UGT2B7-161C alleles and heterozygous for the UGT2B7-372A>G polymorphism. Regarding ABCB1 the patient showed the 3435CC, 2677GT and 1236CT genotypes.

Conclusion

Our results may suggest a role of the UGT2B7-372A>G polymorphism in this reaction.

Keywords

ABCB1 Antiepileptic drugs HLA Lamotrigine Multi-organ dysfunction Pharmacogenetics Rash SNPs UGT1A4 UGT2B7 

Notes

Funding

None.

Conflicts of interest

None to declare.

References

  1. 1.
    Bentué-Ferrer D, Tribut O, Verdier MC, le groupe Suivi Thérapeutique Pharmacologique de la Société Française de Pharmacologie et de Thérapeutique. Therapeutic drug monitoring of lamotrigine. Therapie. 2010;65(1):39–46. doi: 10.2515/therapie/2009063.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaur S, Dogra A. Toxic epidermal necrolysis due to concomitant use of lamotrigine and valproic acid. Indian J Dermatol. 2013;58(5):406. doi: 10.4103/0019-5154.117319.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kim DW, Kim M, Lee SK, Kang R, Lee SY. Lack of association between L48V polymorphism in the UGT1A4 gene and lamotrigine-induced rash. J Korean Epilepsy Soc. 2006;10(1):31–4.Google Scholar
  4. 4.
    Neuman MG, Cohen L, Nanau RM, Hwang PA. Genetic and immune predictors for hypersensitivity syndrome to antiepileptic drugs. Transl Res. 2012;159(5):397–406. doi: 10.1016/j.trsl.2012.01.004.CrossRefPubMedGoogle Scholar
  5. 5.
    Fleurat M, Smollin C. Case files of the University of California San Francisco Medical Toxicology Fellowship: lamotrigine toxicity. J Med Toxicol. 2012;8(1):52–8. doi: 10.1007/s13181-012-0210-x.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Scaparrotta A, Verrotti A, Consilvio NP, et al. Pathogenesis and clinical approaches to anticonvulsant hypersensitivity syndrome: current state of knowledge. Int J Immunopathol Pharmacol. 2011;24(2):277–84.PubMedGoogle Scholar
  7. 7.
    Devulder J. The relevance of monitoring lamotrigine serum concentrations in chronic pain patients. Acta Neurol Belg. 2006;106(1):15–8.PubMedGoogle Scholar
  8. 8.
    Mylonakis E, Vittorio CC, Hollik DA, Rounds S. Lamotrigine overdose presenting as anticonvulsant hypersensitivity syndrome. Ann Pharmacother. 1999;33(5):557–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Peyrière H, Dereure O, Breton H, et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol. 2006;155(2):422–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Hirsch LJ, Weintraub DB, Buchsbaum R, et al. Predictors of Lamotrigine-associated rash. Epilepsia. 2006;47(2):318–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Reuben A, Koch DG, Lee WM, Acute Liver Failure Study Group. Drug-induced acute liver failure: results of a US multicenter, prospective study. Hepatology. 2010;52(6):2065–76. doi: 10.1002/hep.23937.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E. Antiepileptic drugs–best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49(7):1239–76. doi: 10.1111/j.1528-1167.2008.01561.x.CrossRefPubMedGoogle Scholar
  13. 13.
    Johannessen SI. Can pharmacokinetic variability be controlled for the patient’s benefit? The place of TDM for new AEDs. Ther Drug Monit. 2005;27(6):710–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Lu J, Xiong C, Wang X, Hu J, Chen X. Successful treatment of severe lamotrigine and clonazepam poisoning by blood purification. Blood Purif. 2012;34(1):18.CrossRefPubMedGoogle Scholar
  15. 15.
    Singkham N, Towanabut S, Lertkachatarn S, Punyawudho B. Influence of the UGT2B7-161C>T polymorphism on the population pharmacokinetics of lamotrigine in Thai patients. Eur J Clin Pharmacol. 2013;69(6):1285–91. doi: 10.1007/s00228-012-1449-5.CrossRefPubMedGoogle Scholar
  16. 16.
    Blanca Sánchez M, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizán EM, Nicolas JM, Adín J, Shushtarian M, Armijo JA. UGT2B7_-161C>T polymorphism is associated with lamotrigine concentration-to-dose ratio in a multivariate study. Ther Drug Monit. 2010;32(2):177–84. doi: 10.1097/FTD.0b013e3181ceecc6.PubMedGoogle Scholar
  17. 17.
    López M, Dorado P, Monroy N, Alonso ME, Jung-Cook H, Machín E, Peñas-Lledó E, Llerena A. Pharmacogenetics of the antiepileptic drugs phenytoin and lamotrigine. Drug Metab Drug Interact. 2011;26(1):5–12. doi: 10.1515/DMDI.2011.008.CrossRefGoogle Scholar
  18. 18.
    UGT Alleles Nomenclature home Page. UGT Nomenclature Committee. 2005. http://www.ugtalleles.ulaval.ca. Accessed 27 Dec 2013.
  19. 19.
    López M, Dorado P, Ortega A, Peñas-Lledó E, Monroy N, Silva-Zolezzi I, Cobaleda J, Gallego-Aguilera A, Alonso ME, Llerena A. Interethnic differences in UGT1A4 genetic polymorphisms between Mexican Mestizo and Spanish populations. Mol Biol Rep. 2013;40(4):3187–92. doi: 10.1007/s11033-012-2393-2 (Epub 2013 Jan 1).CrossRefPubMedGoogle Scholar
  20. 20.
    Hakooz N, Alzubiedi S, Yousef AM, Arafat T, Dajani R, Ababneh N, Ismail S. UDP glucuronosyltransferase 1A4 (UGT1A4) polymorphisms in a Jordanian population. Mol Biol Rep. 2012;39(7):7763–8. doi: 10.1007/s11033-012-1615-y (Epub 2012 Feb 25).CrossRefPubMedGoogle Scholar
  21. 21.
    Ehmer U, Vogel A, Schütte JK, Krone B, Manns MP, Strassburg CP. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology. 2004;39(4):970–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Saeki M, Saito Y, Jinno H, Sai K, Hachisuka A, Kaniwa N, Ozawa S, Kawamoto M, Kamatani N, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Komamura K, Kotake T, Morishita H, Kamakura S, Kitakaze M, Tomoike H, Sawada J. Genetic variations and haplotypes of UGT1A4 in a Japanese population. Drug Metab Pharmacokinet. 2005;20(2):144–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou J, Argikar UA, Remmel RP. Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics. 2011;12(12):1671–9. doi: 10.2217/pgs.11.105.CrossRefPubMedGoogle Scholar
  24. 24.
    Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T, Miners JO. Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics. 2000;10(8):679–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Holthe M, Rakvåg TN, Klepstad P, Idle JR, Kaasa S, Krokan HE, Skorpen F. Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J. 2003;3(1):17–26. Erratum in: Pharmacogenomics J. 2003;3(4):248.Google Scholar
  26. 26.
    Innocenti F, Liu W, Fackenthal D, Ramírez J, Chen P, Ye X, Wu X, Zhang W, Mirkov S, Das S, Cook E Jr, Ratain MJ. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenetics Genomics. 2008;18(8):683–97. doi: 10.1097/FPC.0b013e3283037fe4.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Sawyer MB, Innocenti F, Das S, Cheng C, Ramírez J, Pantle-Fisher FH, Wright C, Badner J, Pei D, Boyett JM, Cook E Jr, Ratain MJ. A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther. 2003;73(6):566–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Dickens D, Yusof SR, Abbott NJ, Weksler B, Romero IA, Couraud PO, Alfirevic A, Pirmohamed M, Owen A. A multi-system approach assessing the interaction of anticonvulsants with P-gp. PLoS ONE. 2013;8(5):e64854. doi: 10.1371/journal.pone.0064854.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Lovrić M, Božina N, Hajnšek S, Kuzman MR, Sporiš D, Lalić Z, Božina T, Granić P. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther Drug Monit. 2012;34(5):518–25. doi: 10.1097/FTD.0b013e31826517c6.CrossRefPubMedGoogle Scholar
  30. 30.
    Hung CC, Chen CC, Lin CJ, Liou HH. Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenetics Genomics. 2008;18(5):390–402. doi: 10.1097/FPC.0b013e3282f85e36.CrossRefPubMedGoogle Scholar
  31. 31.
    Provenzani A, Santeusanio A, Mathis E, Notarbartolo M, Labbozzetta M, Poma P, Provenzani A, Polidori C, Vizzini G, Polidori P, D’Alessandro N. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol. 2013;19(48):9156–73. doi: 10.3748/wjg.v19.i48.9156.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Löscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther. 2002;301(1):7–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia. 2010;51(8):1333–47. doi: 10.1111/j.1528-1167.2010.02585.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Potschka H. Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther. 2010;125(1):118–27. doi: 10.1016/j.pharmthera.2009.10.004.CrossRefPubMedGoogle Scholar
  35. 35.
    Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, Wood NW, Sisodiya SM. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med. 2003;348(15):1442–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006;234(1):4–33.CrossRefPubMedGoogle Scholar
  37. 37.
    Franke RM, Gardner ER, Sparreboom A. Pharmacogenetics of drug transporters. Curr Pharm Des. 2010;16(2):220–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Kazeem GR, Cox C, Aponte J, et al. High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients. Pharmacogenetics Genomics. 2009;19(9):661–5. doi: 10.1097/FPC.0b013e32832c347d.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie 2015

Authors and Affiliations

  • Alessio Provenzani
    • 1
    Email author
  • Manuela Labbozzetta
    • 2
  • Monica Notarbartolo
    • 2
  • Paola Poma
    • 2
  • Piera Polidori
    • 1
  • Giovanni Vizzini
    • 3
  • Natale D’Alessandro
    • 2
  1. 1.Clinical Pharmacy ServiceMediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT)PalermoItaly
  2. 2.Area of Pharmacology, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”University of PalermoPalermoItaly
  3. 3.Department of MedicineMediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT)PalermoItaly

Personalised recommendations