Advertisement

International Journal of Clinical Pharmacy

, Volume 36, Issue 6, pp 1160–1169 | Cite as

Pharmacoepidemiological study of drug–drug interactions in onco-hematological pediatric patients

  • M. Angeles Fernández de Palencia EspinosaEmail author
  • M. Sacramento Díaz Carrasco
  • José Luis Fuster Soler
  • Guadalupe Ruíz Merino
  • M. Amelia De la Rubia Nieto
  • Alberto Espuny Miró
Research Article

Abstract

Background Onco-hematological patients are particularly susceptible to drug–drug interactions (DDIs) because they often undergo multiple combined treatments. Some studies have analyzed the frequency of DDIs in adult patients with cancer; however, the prevalence of DDIs in children, and especially among pediatric cancer patients, remains unknown. Objective To determine the prevalence of DDIs in treatment sheets comparing two commonly used drug interaction databases, to describe the most common clinically relevant DDIs (CR-DDIs) and to investigate the risk factors associated with them. Setting An onco-hematological pediatric unit from a tertiary hospital in Spain. Method A prospective, observational and descriptive study was carried out from November 2012 to February 2013. Twice a week, every patient’s treatment sheet was collected. Each medication list was screened through two databases: Thomson Micromedex™ and Drug Interaction Facts™. All identified DDIs were graded by their level of severity. Summary statistics were used to describe patient and disease characteristics, most often prescribed drugs, and frequency, types and classification of CR-DDIs. Multivariate analysis was used to identify risk factors associated with CRDDIs. Main outcome measure Prevalence of CR-DDIs was measured as percentage. Results A total of 506 potential DDIs were detected in 150 treatment sheets. The prevalence of CR-DDIs by Micromedex database and Drug Interaction Facts database were 44.7 and 51.3 % respectively. Amikacin, azole antifungals, antiemetics and cyclosporine were the most frequent drugs involved in CR-DDIs. In multivariate analysis, the main risk factor associated with increased odds for CR-DDIs was a higher number of drugs. Conclusion The frequency of potential DDIs was related to a higher number of drugs, being immunosuppressant and azole antifungal agents the most commonly involved drugs. The lack of agreement between different databases enhances the complexity to detect drug interactions in clinical practice.

Keywords

Chemotherapy Children Drug–drug interaction Inpatient Neoplasm 

Notes

Funding

This study had no special source of funding.

Conflicts of interest

Authors have nothing to disclose.

References

  1. 1.
    Stockley BK. General considerations and an outline survey of some basic interaction mechanisms. In: Stockley’s drug interactions. 8th ed. London: Pharmaceutical Press; 2008. p. 1–11. ISBN: 978-0-85369-754-1.Google Scholar
  2. 2.
    Riechelmann RP, Saad ED. A systematic review on drug interactions in oncology. Cancer Investig. 2006;24:704–12.CrossRefGoogle Scholar
  3. 3.
    Smithburger PL, Kane-Gill SL, Seybert AL. Drug–drug interactions in the medical intensive care unit: an assessment of frequency, severity and the medications involved. Int J Pharm Pract. 2012;20:402–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Galindo-Ocaña J, Gil-Navarro MV, García-Morillo JS, Bernabeu-Wittel M, Ollero-Baturonea M, Ortiz-Camúñez MA. Drug–drug interactions in a multicentre polypathological polymedicated patients. Rev Clin Esp. 2010;210(6):270–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Reimche L, Forster AJ, van Walraven C. Incidence and contributors to potential drug–drug interactions in hospitalized patients. J Clin Pharmacol. 2011;51:1043–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Smithburger PL, Kane-Gill SL, Seybert AL. Drug–drug interactions in cardiac and cardiothoracic intensive care units. An analysis of patients in an academic medical centre in the US. Drug Saf. 2010;33(10):879–88.PubMedCrossRefGoogle Scholar
  7. 7.
    Reis AMM, Cassiani SHB. Adverse drug events in an intensive care unit of a university hospital. Eur J Clin Pharmacol. 2011;67:625–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Riechelmann RP, Zimmermann C, Chin SN, Wang L, O’Carroll A, Zarinehbaf S, et al. Potential drug interactions in cancer patients receiving palliative care exclusively. J Pain Symptom Manage. 2008;35:535–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Riechelmann RP, Tannock IF, Wang L, Saad ED, Taback NA, Krzyzanowska MK. Potential drug interactions and duplicate prescriptions among cancer patients. J Natl Cancer Inst. 2007;99:592–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Riechelmann RP, Moreira F, Smaletz O, Saad ED. Potential for drug interactions in hospitalized cancer patients. Cancer Chemother Pharmacol. 2005;56:286–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Haidar C, Jeha S. Drug interactions in childhood cancer. Lancet Oncol. 2011;12:92–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Rashed AN, Wong ICK, Cranswick N, Hefele B, Tomlin S, Jackman J, et al. Adverse drug reactions in children—international surveillance and evaluation (ADVISE). A multicenter cohort study. Drug Saf. 2012;35(6):481–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Telechea H, Speranza N, Lucas L, Giachetto G, Nanni L, Menchaca A. Adverse drug reactions in a paediatric intensive care unit. Farm Hosp. 2012;36(5):403–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Impicciatore P, Choonara I, Clarkson A, Provasi D, Pandolfini C, Bonati M. Incidence of adverse drug reactions in pediatric in/out-patients: a systematic review and meta-analysis of prospective studies. Br J Clin Pharmacol. 2001;52:77–83.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Martínez-Mir I, García-López M, Palop V, Ferrer JM, Rubio E, Morales-Oliva FJ. A prospective study of adverse drug reactions in hospitalized children. Br J Clin Pharmacol. 1999;47:681–8.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Micromedex healthcare series: interactions (updated periodically). Thomson Reuters (Healthcare) Inc. http://www.micromedexsolutions.com/home/dispatch. Accessed March 1 2013.
  17. 17.
    Tatro DS. Drug interaction facts. The autorithy on drug interactions. St Louis, Missouri: Wolters Kluwer Health, 2012. ISBN: 978-1-57439-331-6.Google Scholar
  18. 18.
    Ibáñez A, Alcalá M, García J, Puche E. Drug–drug interactions in patients from an internal medicine service. Farm Hosp. 2008;32(5):293–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Mino-León D, Galván-Plata ME, Doubova SV, Flores-Hernandez S, Reyes-Morales H. A pharmacoepidemiological study of potential drug interactions and their determinant factors in hospitalized patients. Rev Invest Clin. 2011;63(2):170–8.PubMedGoogle Scholar
  20. 20.
    Reis AMM, Cassiani SHB. Prevalence of potential drug interactions in patients in an intensive care unit of a university hospital in Brazil. Clinics. 2011;66(1):9–15.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Martinbiancho J, Zuckermann J, Dos Santos L, Silva MM. Profile of drug interactions in hospitalized children. Pharm Pract. 2007;5(4):157–61.Google Scholar
  22. 22.
    Zwart-van Rijkom JEF, Uijtendaal EV, ten Berg MJ, van Solinge WW, Egberts ACG. Frequency and nature of drug–drug interactions in a Dutch university hospital. Br J Clin Pharmacol. 2009;68(2):187–93.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Smith CR, Lietman PS. Effect of furosemide on aminoglycoside-induced nephrotoxicity and auditory toxicity in humans. Antimicrob Agents Chemother. 1983;23(1):133–7.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    DIFLUCAN Product information. http://www.aemps.gob.es/cima/pdfs/es/ft/58817/FT_58817.pdf. Accessed July 20, 2013.
  25. 25.
    ZOFRAN Product information. http://www.aemps.gob.es/cima/pdfs/es/ft/59071/FT_59071.pdf. Accessed July 20, 2013.
  26. 26.
    Romero AJ, Le PP, Nilsson LG, Wood N. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther. 2002;71:226–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Fanta S, Jonsson S, Backman JT, Karlsson MO, Hoppu K. Developmental pharmacokinetics of ciclosporin—a population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol. 2007;64:772–84.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Fukudo M, Yano I, Masuda S, Goto M, Uesugi M, Katsura T, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther. 2006;80:331–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Chan TYK, Critchley JAJH. Life-threatening hyperkalaemia in an elderly patient receiving captopril, furosemide and potassium supplements. Drug Saf. 1992;7:159–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Stoltz ML, Andrews CE. Severe hyperkalemia during very-low-calorie diets and angiotensin converting enzyme use. JAMA. 1990;264:2737–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Cagnoni PJ, Matthes S, Day TC, Bearman SI, Shpall EJ, Jones RB. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant. 1999;24(1):1–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Gilbert CJ, Petros WP, Vredenburgh J, Hussein A, Ross M, Rubin P, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol. 1998;42(6):497–503.PubMedCrossRefGoogle Scholar
  33. 33.
    Balis FM, Holcenberg JS, Zimm S, Tubergen D, Collins JM, Murphy RF, et al. The effect of methotrexate on the bioavailability of oral 6-mercaptopurine. Clin Pharmacol Ther. 1987;41(4):384–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Andersen JB, Szumlanski C, Weinshilboum RM, Schmiegelow K. Pharmacokinetics, dose adjustments, and 6-mercaptopurine/methotrexate drug interactions in two patients with thiopurine methyltransferase deficiency. Acta Paediatr. 1998;87(1):108–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Abarca J, Malone DC, Armstrong EP, Grizzle AJ, Hansten PD, Van Bergen RC, et al. Concordance of severity ratings provided in four drug interaction compendia. J Am Pharm Assoc. 2004;44(2):136–41.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie 2014

Authors and Affiliations

  • M. Angeles Fernández de Palencia Espinosa
    • 1
    Email author
  • M. Sacramento Díaz Carrasco
    • 1
  • José Luis Fuster Soler
    • 2
  • Guadalupe Ruíz Merino
    • 3
  • M. Amelia De la Rubia Nieto
    • 1
  • Alberto Espuny Miró
    • 4
  1. 1.Servicio de FarmaciaHospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
  2. 2.Sección de Oncohematología Pediátrica, Servicio de PediatríaHospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
  3. 3.Fundación para la Formación e Investigación Sanitarias de la Región de MurciaMurciaSpain
  4. 4.Departamento de FarmacologíaUniversidad de MurciaMurciaSpain

Personalised recommendations