Skip to main content
Log in

Cyclocreatine Transport by SLC6A8, the Creatine Transporter, in HEK293 Cells, a Human Blood-Brain Barrier Model Cell, and CCDSs Patient-Derived Fibroblasts

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cyclocreatine, a creatine analog, is a candidate drug for treating patients with cerebral creatine deficiency syndromes (CCDSs) caused by creatine transporter (CRT, SLC6A8) deficiency, which reduces brain creatine level. The purpose of this study was to clarify the characteristics of cyclocreatine transport in HEK293 cells, which highly express endogenous CRT, in hCMEC/D3 cells, a human blood-brain barrier (BBB) model, and in CCDSs patient-derived fibroblasts with CRT mutations.

Methods

Cells were incubated at 37°C with [14C]cyclocreatine (9 μM) and [14C]creatine (9 μM) for specified periods of times in the presence or absence of inhibitors, while the siRNAs were transfected by lipofection. Protein expression and mRNA expression were quantified using targeted proteomics and quantitative PCR, respectively.

Results

[14C]Cyclocreatine was taken up by HEK293 cells in a time-dependent manner, while exhibiting saturable kinetics. The inhibition and siRNA knockdown studies demonstrated that the uptake of [14C]cyclocreatine by both HEK293 and hCMEC/D3 cells was mediated predominantly by CRT as well as [14C]creatine. In addition, uptake of [14C]cyclocreatine and [14C]creatine by the CCDSs patient-derived fibroblasts was found to be largely reduced.

Conclusion

The present study suggests that cyclocreatine is a CRT substrate, where CRT is the predominant contributor to influx of cyclocreatine into the brain at the BBB. Our findings provide vital insights for the purposes of treating CCDSs patients using cyclocreatine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AGAT:

L-Arginine: glycine amidinotransferase

ATP:

Adenosine triphosphate

BAP31:

B cell receptor-associated protein

BBB:

Blood-brain barrier

bFGF:

Basic fibroblast growth factor

CaMK2a:

Ca2+/calmodulin-dependent protein kinase a

CCDSs:

Cerebral creatine deficiency syndromes

CRT:

Creatine transporter

DMEM:

Dulbecco’s modified Eagle medium

FBS:

Fetal bovine serum

GAMT:

Guanidinoacetate methyltransferase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GC:

Graphite carbon

GPA:

β-guanidinopropionic acid

HBSS:

Hank’s balanced salt solution

hCMEC:

Human cerebral microvascular endothelial cell

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

MRM:

Multiple reaction monitoring

PTS:

Phase-transfer surfactant

SDB:

Styrene-divinylbenzene

SLC6A8:

Solute carrier family 6 member 8

References

  1. Rosenberg EH, Almeida LS, Kleefstra T, deGrauw RS, Yntema HG, Bahi N, et al. High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet. 2004;75:97–105.

    Article  CAS  Google Scholar 

  2. Salomons GS, van Dooren SJ, Verhoeven NM, Marsden D, Schwartz C, Cecil KM, et al. X-linked creatine transporter defect: an overview. J Inherit Metab Dis. 2003;26:309–18.

    Article  CAS  Google Scholar 

  3. deGrauw TJ, Cecil KM, Byars AW, Salomons GS, Ball WS, Jakobs C. The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem. 2003;244:45–8.

    Article  CAS  Google Scholar 

  4. Almeida LS, Verhoeven NM, Roos B, Valongo C, Cardoso ML, Vilarinho L, et al. Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab. 2004;82:214–9.

    Article  CAS  Google Scholar 

  5. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213.

    Article  CAS  Google Scholar 

  6. Mercimek-Mahmutoglu S, Stoeckler-Ipsiroglu S, Adami A, Appleton R, Araujo HC, Duran M, et al. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67:480–4.

    Article  CAS  Google Scholar 

  7. Battini R, Leuzzi V, Carducci C, Tosetti M, Bianchi MC, Item CB, et al. Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab. 2002;77:326–31.

    Article  CAS  Google Scholar 

  8. Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, et al. The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab. 2002;22:1327–35.

    Article  CAS  Google Scholar 

  9. Stockler-Ipsiroglu S, van Karnebeek C, Longo N, Korenke GC, Mercimek-Mahmutoglu S, Marquart I, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab. 2014;111:16–25.

    Article  CAS  Google Scholar 

  10. Edvardson S, Korman SH, Livne A, Shaag A, Saada A, Nalbandian R, et al. L-arginine:glycine amidinotransferase (AGAT) deficiency: clinical presentation and response to treatment in two patients with a novel mutation. Mol Genet Metab. 2010;101:228–32.

    Article  CAS  Google Scholar 

  11. Schulze A. Creatine deficiency syndromes. Mol Cell Biochem. 2003;244:143–50.

    Article  CAS  Google Scholar 

  12. Poo-Arguelles P, Arias A, Vilaseca MA, Ribes A, Artuch R, Sans-Fito A, et al. X-linked creatine transporter deficiency in two patients with severe mental retardation and autism. J Inherit Metab Dis. 2006;29:220–3.

    Article  CAS  Google Scholar 

  13. Cecil KM, Salomons GS, Ball WS Jr, Wong B, Chuck G, Verhoeven NM, et al. Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol. 2001;49:401–4.

    Article  CAS  Google Scholar 

  14. Rudnick G, Kramer R, Blakely RD, Murphy DL, Verrey F. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch. 2014;466:25–42.

    Article  CAS  Google Scholar 

  15. van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis. 2014;37:715–33.

    Article  Google Scholar 

  16. Uemura T, Ito S, Ohta Y, Tachikawa M, Wada T, Terasaki T, et al. Abnormal N-glycosylation of a novel missense Creatine transporter mutant, G561R, Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization. Biol Pharm Bull. 2017;40:49–55.

    Article  CAS  Google Scholar 

  17. Rosenberg EH, Martinez Munoz C, Betsalel OT, van Dooren SJ, Fernandez M, Jakobs C, et al. Functional characterization of missense variants in the creatine transporter gene (SLC6A8): improved diagnostic application. Hum Mutat. 2007;28:890–6.

    Article  CAS  Google Scholar 

  18. Betsalel OT, Pop A, Rosenberg EH, Fernandez-Ojeda M, Jakobs C, Salomons GS. Detection of variants in SLC6A8 and functional analysis of unclassified missense variants. Mol Genet Metab. 2012;105:596–601.

    Article  CAS  Google Scholar 

  19. Mak CS, Waldvogel HJ, Dodd JR, Gilbert RT, Lowe MT, Birch NP, et al. Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience. 2009;163:571–85.

    Article  CAS  Google Scholar 

  20. Dodd JR, Birch NP, Waldvogel HJ, Christie DL. Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem. 2010;115:684–93.

    Article  CAS  Google Scholar 

  21. Skelton MR, Schaefer TL, Graham DL, Degrauw TJ, Clark JF, Williams MT, et al. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS One. 2011;6:e16187.

    Article  CAS  Google Scholar 

  22. Baroncelli L, Molinaro A, Cacciante F, Alessandri MG, Napoli D, Putignano E, et al. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging. Hum Mol Genet. 2016;25:4186–200.

    Article  CAS  Google Scholar 

  23. Baroncelli L, Alessandri MG, Tola J, Putignano E, Migliore M, Amendola E, et al. A novel mouse model of creatine transporter deficiency. F1000Res. 2014;3:228.

    Article  Google Scholar 

  24. Woznicki DT, Walker JB. Formation of a supplemental long time-constant reservoir of high energy phosphate by brain in vivo and in vitro and its reversible depletion by potassium depolarization. J Neurochem. 1979;33:75–80.

    Article  CAS  Google Scholar 

  25. Kurosawa Y, Degrauw TJ, Lindquist DM, Blanco VM, Pyne-Geithman GJ, Daikoku T, et al. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest. 2012;122:2837–46.

    Article  CAS  Google Scholar 

  26. Halestrap AP. Monocarboxylic acid transport. Compr Physiol. 2013;3:1611–43.

    Article  Google Scholar 

  27. Osaka H, Takagi A, Tsuyusaki Y, Wada T, Iai M, Yamashita S, et al. Contiguous deletion of SLC6A8 and BAP31 in a patient with severe dystonia and sensorineural deafness. Mol Genet Metab. 2012;106:43–7.

    Article  CAS  Google Scholar 

  28. Kato H, Miyake F, Shimbo H, Ohya M, Sugawara H, Aida N, et al. Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8. Brain and Development. 2014;36:630–3.

    Article  Google Scholar 

  29. Masuda T, Hoshiyama T, Uemura T, Hirayama-Kurogi M, Ogata S, Furukawa A, et al. Large-scale quantitative comparison of plasma Transmembrane proteins between two human blood-brain barrier model cell lines, hCMEC/D3 and HBMEC/cibeta. Mol Pharm. 2019;16:2162–71.

    Article  CAS  Google Scholar 

  30. Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731–40.

    Article  CAS  Google Scholar 

  31. Nakamura K, Hirayama-Kurogi M, Ito S, Kuno T, Yoneyama T, Obuchi W, et al. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: comparison with MRM/SRM and HR-MRM/PRM. Proteomics. 2016;16:2106–17.

    Article  CAS  Google Scholar 

  32. Pis-Diez R, Parajón-Costa BS, Franca CA, Piro OE, Castellano EE, González-Baró AC. Cyclocreatine, an anticancer and neuroprotective agent. Spectroscopic, structural and theoretical study. J Mol Struct. 2010;975:303–9.

    Article  CAS  Google Scholar 

  33. Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys. 1999;361:75–84.

    Article  CAS  Google Scholar 

  34. Marescau B, De Deyn P, Wiechert P, Van Gorp L, Lowenthal A. Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit, and man. J Neurochem. 1986;46:717–20.

    Article  CAS  Google Scholar 

  35. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83:367–74.

    Article  CAS  Google Scholar 

  36. Marescau B, Deshmukh DR, Kockx M, Possemiers I, Qureshi IA, Wiechert P, et al. Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism. 1992;41:526–32.

    Article  CAS  Google Scholar 

  37. Wang AQ, Hughes E, Huang W, Kerns EH, Xu X. Quantification of cyclocreatine in mouse and rat plasma using hydrophilic-interaction ultra-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2017;145:629–33.

    Article  CAS  Google Scholar 

  38. Enrico A, Patrizia G, Luisa P, Alessandro P, Gianluigi L, Carlo G, et al. Electrophysiology and biochemical analysis of cyclocreatine uptake and effect in hippocampal slices. J Integr Neurosci. 2013;12:285–97.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported in part by JSPS KAKENHI Grant Number JP26293035 and JP18H02590, and by AMED under Grant Number JP19ek0109396. Ohtsuki S is a full professor at Kumamoto University and is also a director of Proteomedix Frontiers. The other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

All authors, Uemura T, Ito S, Masuda T, Shimbo H, Goto T, Osaka H, Wada T, Couraud PO, Ohtsuki S, contributed to study design and manuscript revision. Uemura T conducted the experiments and performed data analysis. Uemura T, Ito S. and Ohtsuki S wrote the manuscript. All the authors have provided their final approval for submission of this manuscript.

Corresponding author

Correspondence to Sumio Ohtsuki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uemura, T., Ito, S., Masuda, T. et al. Cyclocreatine Transport by SLC6A8, the Creatine Transporter, in HEK293 Cells, a Human Blood-Brain Barrier Model Cell, and CCDSs Patient-Derived Fibroblasts. Pharm Res 37, 61 (2020). https://doi.org/10.1007/s11095-020-2779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-2779-0

KEY WORDS

Navigation