Skip to main content
Log in

Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to characterize a commercially available primary human nasal epithelial cell culture and its gene expression of a wide range of drug transporters under different culture conditions.

Methods

Human nasal cells were cultured in three different types of culture media at the air-liquid (A-L) or liquid-liquid (L-L) interfaces for 1 or 3 wks. The effects of the different cell culture conditions were evaluated using light and electron microscopy, transepithelial electrical resistance (TEER) measurements, permeation studies with dextran, and gene expression profiling of 84 drug transporters.

Results

The type of culture medium affected cell ultrastructure, TEER, and dextran permeation across epithelia. The expression of 20 drug transporter genes depended on the culture interface and/or time in culture; the A-L interface and longer time in culture favored higher expression levels of five ABC and seven SLC transporters.

Conclusions

Culture conditions influence the morphology, barrier formation, permeation properties, and drug transporter expression of human nasal epithelial cells, and this must be taken into consideration during the establishment and validation of in vitro models. A thorough characterization of a nasal epithelial model and its permeability properties is necessary to obtain an appropriate standardized model for the design of aerosol therapeutics and drug transport studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AQP:

Aquaporin

A-L:

Air-liquid interface

DIV:

Days in vitro

hAECN:

Human airway epithelial cells of nasal origin

L-L:

Liquid-liquid interface

SEM:

Scanning electron microscopy

SLC:

Solute carrier

TEER:

Transepithelial electrical resistance

TEM:

Transmission electron microscopy

References

  1. Audus KL, Bartel RL, Hidalgo IJ, Borchardt RT. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm Res. 1990;7(5):435–51.

    CAS  PubMed  Google Scholar 

  2. Wengst A, Reichl S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur J Pharms Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2010;74(2):290–7.

    CAS  Google Scholar 

  3. Kim D-D. In Vitro Cellular Models for Nasal Drug Absorption Studies. In: Ehrhardt C, Kim K-J, editors. Drug Absorption Studies. Biotechnology: Pharmaceutical Aspects. VII: Springer US; 2008. p. 216–34.

  4. Karp PH, Moninger TO, Weber SP, Nesselhauf TS, Launspach JL, Zabner J, et al. An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol. 2002;188:115–37.

    PubMed  Google Scholar 

  5. Werner U, Kissel T. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm Res. 1996;13(7):978–88.

    CAS  PubMed  Google Scholar 

  6. Muller L, Brighton LE, Carson JL, Fischer WA, 2nd, Jaspers I. Culturing of human nasal epithelial cells at the air liquid interface. J Visual Exp: JoVE. 2013(80).

  7. Fulcher ML, Randell SH. Human nasal and tracheo-bronchial respiratory epithelial cell culture. Methods Mol Biol. 2013;945:109–21.

    PubMed  Google Scholar 

  8. Ong HX, Jackson CL, Cole JL, Lackie PM, Traini D, Young PM, et al. Primary air-liquid Interface culture of nasal epithelium for nasal drug delivery. Mol Pharm. 2016;13(7):2242–52.

    CAS  PubMed  Google Scholar 

  9. Yoo JW, Kim YS, Lee SH, Lee MK, Roh HJ, Jhun BH, et al. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm Res. 2003;20(10):1690–6.

    CAS  PubMed  Google Scholar 

  10. Yoon JH, Moon HJ, Seong JK, Kim CH, Lee JJ, Choi JY, et al. Mucociliary differentiation according to time in human nasal epithelial cell culture. Differentiation; Res Biol Divers. 2002;70(2–3):77–83.

    Google Scholar 

  11. Werner U, Kissel T. Development of a human nasal epithelial cell culture model and its suitability for transport and metabolism studies under in vitro conditions. Pharm Res. 1995;12(4):565–71.

    CAS  PubMed  Google Scholar 

  12. Chemuturi NV, Hayden P, Klausner M, Donovan MD. Comparison of human tracheal/bronchial epithelial cell culture and bovine nasal respiratory explants for nasal drug transport studies. J Pharm Sci. 2005;94(9):1976–85.

    CAS  PubMed  Google Scholar 

  13. Koizumi J, Kojima T, Ogasawara N, Kamekura R, Kurose M, Go M, et al. Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation. Mol Pharmacol. 2008;74(2):432–42.

    CAS  PubMed  Google Scholar 

  14. Shao D, Massoud E, Clarke D, Cowley E, Renton K, Agu RU. Optimization of human nasal epithelium primary culture conditions for optimal proton oligopeptide and organic cation transporters expression in vitro. Int J Pharm. 2013;441(1–2):334–42.

    CAS  PubMed  Google Scholar 

  15. Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH. Well-differentiated human airway epithelial cell cultures. Methods Mol Med. 2005;107:183–206.

    CAS  PubMed  Google Scholar 

  16. Lee MK, Yoo JW, Lin H, Kim YS, Kim DD, Choi YM, et al. Air-liquid interface culture of serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Drug Delivery. 2005;12(5):305–11.

    CAS  PubMed  Google Scholar 

  17. Murgia C, Grosser D, Truong-Tran AQ, Roscioli E, Michalczyk A, Ackland ML, et al. Apical localization of zinc transporter ZnT4 in human airway epithelial cells and its loss in a murine model of allergic airway inflammation. Nutrients. 2011;3(11):910–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Widdicombe JH, Sachs LA, Morrow JL, Finkbeiner WE. Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. BioTechniques. 2005;39(2):249–55.

    CAS  PubMed  Google Scholar 

  19. Kreft ME, Jerman UD, Lasič E, Lanišnik Rižner T, Hevir-Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32(2):665–79.

    CAS  PubMed  Google Scholar 

  20. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, et al. Guidance on good cell culture practice. A report of the second ECVAM task force on good cell culture practice. Altern Lab Anim. 2005;33(3):261–87.

    CAS  PubMed  Google Scholar 

  21. Ferreira Lopes S, Vacher G, Ciarlo E, Savova-Bianchi D, Roger T, Niculita-Hirzel H. Primary and Immortalized Human Respiratory Cells Display Different Patterns of Cytotoxicity and Cytokine Release upon Exposure to Deoxynivalenol, Nivalenol and Fusarenon-X. Toxins (Basel). 2017;9(11).

  22. Lötzerich M, Roulin PS, Boucke K, Witte R, Georgiev O, Greber UF. Rhinovirus 3C protease suppresses apoptosis and triggers caspase-independent cell death. Cell Death Dis. 2018;9(3):272.

    PubMed  PubMed Central  Google Scholar 

  23. Schmidt MC. Therapeutic peptides: how do they get through the nasal epithelium? Zurich: institute of technology Zurich (ETH); 1999.

  24. Glorieux S, Bachert C, Favoreel HW, Vandekerckhove AP, Steukers L, Rekecki A, et al. Herpes simplex virus type 1 penetrates the basement membrane in human nasal respiratory mucosa. PLoS One. 2011;6(7):e22160.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sibinovska N, Žakelj S, Kristan K. Suitability of RPMI 2650 cell models for nasal drug permeability prediction. Eur J Pharm Biopharm. 2019;145:85–95.

    CAS  PubMed  Google Scholar 

  26. Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In vitro: Int J Publ Assoc BIBRA. 2005;19(1):107–22.

    CAS  Google Scholar 

  27. Kreft ME, Jerman UD, Lasič E, Hevir-Kene N, Rižner TL, Peternel L, et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci. 2015;69:1–9.

    CAS  PubMed  Google Scholar 

  28. Sibinovska N, Žakelj S, Roškar R, Kristan K. Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int J Pharm. 2020;585:119484.

    CAS  PubMed  Google Scholar 

  29. Shao D, Massoud E, Anand U, Parikh A, Cowley E, Clarke D, et al. Organic cation transporters in human nasal primary culture: expression and functional activity. Ther Deliv. 2013;4(4):439–51.

    CAS  PubMed  Google Scholar 

  30. Agu R, MacDonald C, Cowley E, Shao D, Renton K, Clarke DB, et al. Differential expression of organic cation transporters in normal and polyps human nasal epithelium: implications for in vitro drug delivery studies. Int J Pharm. 2011;406(1–2):49–54.

    CAS  PubMed  Google Scholar 

  31. Agu R, Dang HV, Jorissen M, Willems T, Vandoninck S, Van Lint J, et al. In vitro polarized transport of L-phenylalanine in human nasal epithelium and partial characterization of the amino acid transporters involved. Pharm Res. 2003;20(8):1125–32.

    CAS  PubMed  Google Scholar 

  32. Bleier BS, Nocera AL, Iqbal H, Hoang JD, Feldman RE, Han X. P-glycoprotein functions as an immunomodulator in healthy human primary nasal epithelial cells. Int Forum Allergy Rhinol. 2013;3(6):433–8.

    PubMed  Google Scholar 

  33. Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG, et al. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2011;300(1):L25–31.

    CAS  PubMed  Google Scholar 

  34. Thompson K, Molina RM, Donaghey T, Schwob JE, Brain JD, Wessling-Resnick M. Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB J: Off Publ Federation Am Soci Exp Biol. 2007;21(1):223–30.

    CAS  Google Scholar 

  35. Agu R, Cowley E, Shao D, Macdonald C, Kirkpatrick D, Renton K, et al. Proton-coupled oligopeptide transporter (POT) family expression in human nasal epithelium and their drug transport potential. Mol Pharm. 2011;8(3):664–72.

    CAS  PubMed  Google Scholar 

  36. Chemuturi NV, Donovan MD. Role of organic cation transporters in dopamine uptake across olfactory and nasal respiratory tissues. Mol Pharm. 2007;4(6):936–42.

    CAS  PubMed  Google Scholar 

  37. Genter MB, Krishan M, Augustine LM, Cherrington NJ. Drug transporter expression and localization in rat nasal respiratory and olfactory mucosa and olfactory bulb. Drug Metab Disposition: Biol Fate Chem. 2010;38(10):1644–7.

    CAS  Google Scholar 

  38. Kaler G, Truong DM, Sweeney DE, Logan DW, Nagle M, Wu W, et al. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem Biophys Res Commun. 2006;351(4):872–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Genter MB, Kendig EL, Knutson MD. Uptake of materials from the nasal cavity into the blood and brain: are we finally beginning to understand these processes at the molecular level? Ann N Y Acad Sci. 2009;1170:623–8.

    PubMed  Google Scholar 

  40. Kandimalla KK, Donovan MD. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Pharm Res. 2005;22(7):1121–8.

    CAS  PubMed  Google Scholar 

  41. Kandimalla KK, Donovan MD. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: implications on nose-to-brain transport. J Pharm Sci. 2005;94(3):613–24.

    CAS  PubMed  Google Scholar 

  42. Al-Ghabeish M, Scheetz T, Assem M, Donovan MD. Microarray determination of the expression of drug transporters in humans and animal species used for the investigation of nasal absorption. Mol Pharm. 2015;12(8):2742–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm. 2016;508(1–2):22–33.

    CAS  PubMed  Google Scholar 

  44. Mercier C, Jacqueroux E, He Z, Hodin S, Constant S, Perek N, et al. Pharmacological characterization of the 3D MucilAir™ nasal model. Eur J Pharm Biopharm. 2019;139:186–96.

    CAS  PubMed  Google Scholar 

  45. Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, et al. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2016;107:223–33.

    CAS  Google Scholar 

  46. Fotiadis D, Kanai Y, Palacin M. The SLC3 and SLC7 families of amino acid transporters. Mol Asp Med. 2013;34(2–3):139–58.

    CAS  Google Scholar 

  47. Seno S, Ogawa T, Shibayama M, Kouzaki H, Shimizu T. Expression and localization of aquaporin 1, 2, 3, 4, and 5 in human nasal mucosa. Am J Rhinol Allergy. 2012;26(3):167–71.

    PubMed  Google Scholar 

  48. Ablimit A, Matsuzaki T, Tajika Y, Aoki T, Hagiwara H, Takata K. Immunolocalization of water channel aquaporins in the nasal olfactory mucosa. Arch Histol Cytol. 2006;69(1):1–12.

    CAS  PubMed  Google Scholar 

  49. Yuan L, Lv B, Zha J, Wang W, Wang Z. Basal and benzo[a]pyrene-induced expression profile of phase I and II enzymes and ABC transporter mRNA in the early life stage of Chinese rare minnows (Gobiocypris rarus). Ecotoxicol Environ Saf. 2014;106:86–94.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Kristan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Table 1

(DOCX 33 kb)

Supplemental Table 2

(DOCX 20 kb)

Supplemental Fig. 1

The main ultrastructural characteristics of hAECN. These characteristics were observed irrespective of the media used. Rough endoplasmic reticulum (ER) is scarce in the cytoplasm, the Golgi apparatus (GA) is simple, normal mitochondria (M) and endocytotic compartments (E) are present, and bundles of cytoskeletal filaments (arrows) are abundant. Scale bar: 500 nm. (PNG 1048 kb)

High Resolution (TIF 15447 kb)

Supplemental Fig. 2

Immunofluorescence labelling of tight junctional protein occludin (A–C), adherent junction protein E-cadherin (D–F), and cytokeratin 7 (CK7, G–I) in hAECN of passage P3 maintained in Epithelix, PromoCell, and A-MEM for 1 wk. Nuclei are blue. Scale bar: 10 μm. (PNG 4399 kb)

High Resolution (TIF 73936 kb)

Supplemental Fig. 3

Transepithelial permeation of dextran-FITC across hAECN, RPMI2560, and Calu-3 epithelial models at 30 min (left) and 3 h (right) (n = 3–4, mean ± SE). The cells were maintained in A-MEM at the A-L or L-L interface. (PNG 170 kb)

High Resolution (TIF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreft, M.E., Tratnjek, L., Lasič, E. et al. Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells. Pharm Res 37, 170 (2020). https://doi.org/10.1007/s11095-020-02905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02905-w

KEY WORDS

Navigation