Pharmaceutical Research

, 37:33 | Cite as

Analysis of In Vitro Cytotoxicity of Carbohydrate-Based Materials Used for Dissolvable Microneedle Arrays

  • Ezgi P. Yalcintas
  • Daniel S. Ackerman
  • Emrullah Korkmaz
  • Cheryl A. Telmer
  • Jonathan W. Jarvik
  • Phil G. Campbell
  • Marcel P. Bruchez
  • O. Burak OzdoganlarEmail author
Research Paper



Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo. However, to satisfy regulatory requirements and be utilized in clinical applications, cytotoxicity of the base polymers should also be thoroughly characterized. This study systematically investigated the cytotoxicity of several important carbohydrate-based base polymers used for production of MNAs, including carboxymethyl cellulose (CMC), maltodextrin (MD), trehalose (Treh), glucose (Gluc), and hyaluronic acid (HA).


Each material was evaluated using in vitro cell-culture methods on relevant mouse and human cells, including MPEK-BL6 mouse keratinocytes, NIH-3T3 mouse fibroblasts, HaCaT human keratinocytes, and NHDF human fibroblasts. A common laboratory cell line, human embryonic kidney cells HEK-293, was also used to allow comparisons to various cytotoxicity studies in the literature. Dissolvable MNA materials were evaluated at concentrations ranging from 3 mg/mL to 80 mg/mL.


Qualitative and quantitative analyses of cytotoxicity were performed using optical microscopy, confocal fluorescence microscopy, and flow cytometry-based assays for cell morphology, viability, necrosis and apoptosis. Results from different methods consistently demonstrated negligible in vitro cytotoxicity of carboxymethyl cellulose, maltodextrin, trehalose and hyaluronic acid. Glucose was observed to be toxic to cells at concentrations higher than 50 mg/mL.


It is concluded that CMC, MD, Treh, HA, and glucose (at low concentrations) do not pose challenges in terms of cytotoxicity, and thus, are good candidates as MNA materials for creating clinically-relevant and well-tolerated biodissolvable MNAs.

Key Words

cytotoxicity biomaterials dissolvable microneedles carboxymethyl cellulose maltodextrin trehalose glucose hyaluronic acid in vitro skin cells 



Carboxymethyl cellulose


Dulbecco’s Modified Eagle’s Medium


Fetal bovine serum


U.S. Food and Drug Administration




Good manufacturing practices


Hyaluronic acid


International Organization for Standardization




Microneedle array


Phosphate-buffered saline




Author Contributions

Conceptualization, E.P.Y, E.K., P.G.C., and O.B.O.; Methodology, E.P.Y., E.K., D.S.A., P.G.C., and M.P.B.; Investigation, E.P.Y., D.S.A., E.K., and P.G.C.; Resources, O.B.O., P.G.C., M.P.B., and J.W.J.; Writing - original draft, E.P.Y. and E.K.; Writing - review editing, E.P.Y., E.K., P.G.C., M.P.B., J.W.J., C.A.T., and O.B.O.; Visualization, E.P.Y., E.K., and D.S.A.; Supervision, E.K., P.G.C., M.P.B., J.W.J., and O.B.O.; Project administration, P.G.C., O.B.O., and M.P.B.; Funding acquisition; O.B.O., P.G.C., M.P.B., and J.W.J.

Supplementary material

11095_2019_2748_MOESM1_ESM.jpg (7.3 mb)
ESM 1 (JPG 7.28 MB)
11095_2019_2748_MOESM2_ESM.jpg (7.1 mb)
ESM 2 (JPG 7.06 MB)
11095_2019_2748_MOESM3_ESM.jpg (7.9 mb)
ESM 3 (JPG 7.86 MB)
11095_2019_2748_MOESM4_ESM.jpg (7.5 mb)
ESM 4 (JPG 7.50 MB)
11095_2019_2748_MOESM5_ESM.jpg (3.5 mb)
ESM 5 (JPG 3.53 MB)


  1. 1.
    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.Google Scholar
  2. 2.
    Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur J Pharm Biopharm. Elsevier B.V. 2015;89:224–31.Google Scholar
  3. 3.
    Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm Res. 2014;31(1):117–35.Google Scholar
  4. 4.
    Tuan-Mahmood TM, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37.Google Scholar
  5. 5.
    Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, et al. Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha into Human Skin. J Pharm Sci. Elsevier B.V.; 2016;105(11):3453–7.Google Scholar
  6. 6.
    Kovaliov M, Li S, Korkmaz E, Cohen-Karni D, Tomycz N, Ozdoganlar OB, et al. Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management. RSC Adv. Royal Society of Chemistry; 2017;7(76):47904–12.Google Scholar
  7. 7.
    Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R Reports. 2016;104:1–32.Google Scholar
  8. 8.
    Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945–52.Google Scholar
  9. 9.
    Donnelly RF, Singh TR, Morrow DI, Woolfson AD. Microneedle-mediated transdermal and intradermal drug delivery. Hoboken: John Wiley & Sons; 2012.Google Scholar
  10. 10.
    Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.Google Scholar
  11. 11.
    Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.Google Scholar
  12. 12.
    Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25(5):448–60.Google Scholar
  13. 13.
    Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, et al. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater. 2015;24:96–105.Google Scholar
  14. 14.
    Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8.Google Scholar
  15. 15.
    Valenta C, Auner BG. The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm. 2004;58(2):279–89.Google Scholar
  16. 16.
    Godin B, Touitou E. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.Google Scholar
  17. 17.
    Akers MJ. Excipient-drug interactions in parenteral formulations. J Pharm Sci. 2002;91(11):2283–300.Google Scholar
  18. 18.
    Colaço C, Sen S, Thangavelu M, Pinder S, Roser B. Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology. Bio/Technology. 1992;10(9):1007–11.Google Scholar
  19. 19.
    Ohtake S, Wang YJ. Trehalose: Current use and future applications. J Pharm Sci 2011;100(6):2020–53.Google Scholar
  20. 20.
    Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: A multifunctional molecule. Glycobiology. 2003;13(4):17–27.Google Scholar
  21. 21.
    Hreczuk-Hirst D, Chicco D, German L, Duncan R. Dextrins as potential carriers for drug targeting: Tailored rates of dextrin degradation by introduction of pendant groups. Int J Pharm. 2001;230(1-2):57–66.Google Scholar
  22. 22.
    Moreira S, Gil Da Costa RM, Guardáo L, Gärtner F, Vilanova M, Gama M. In vivo biocompatibility and biodegradability of dextrin-based hydrogels. J Bioact Compat Polym. 2010;25(2):141–53.Google Scholar
  23. 23.
    Sannino A, Demitri C, Madaghiele M. Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials (Basel). 2009;2(2):353–73.Google Scholar
  24. 24.
    Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y. Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res. 1989;23(1):125–33.Google Scholar
  25. 25.
    Dhar N, Akhlaghi SP, Tam KC. Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym. 2012;87(1):101–9.Google Scholar
  26. 26.
    Burdick JA, Prestwich GD. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv Mater. 2011;23(12):H41–56.Google Scholar
  27. 27.
    Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.Google Scholar
  28. 28.
    Dawids S, ed. Test procedures for the blood compatibility of biomaterials. Berlin: Springer Science & Business Media; 2012.Google Scholar
  29. 29.
    Poet TS, McDougal JN. Skin absorption and human risk assessment. Chem Biol Interact. 2002;140(1):19–34.Google Scholar
  30. 30.
    Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: Unravelling the immune system. Nat Rev Immunol. 2004;4(8):648–55.Google Scholar
  31. 31.
    Marjanovič I, Kandušer M, Miklavčič D, Keber MM, Pavlin M. Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency. J Membr Biol. 2014;247(12):1259–67.Google Scholar
  32. 32.
    Wallin RF, Arscott EF. A practical guide to ISO 10993-5: Cytotoxicity. Med Device Diagnostic Ind. 1998;20:96–8.Google Scholar
  33. 33.
    Nogueira D, Mitjans M, Rolim C, Vinardell M. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies. Nanomaterials. 2014;4(2):454–84.Google Scholar
  34. 34.
    Wiegand C, Hipler U-C. Evaluation of Biocompatibility and Cytotoxicity Using Keratinocyte and Fibroblast Cultures. Skin Pharmacol Physiol. 2009;22(2):74–82.Google Scholar
  35. 35.
    Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small. 2008;4(1):26–49.Google Scholar
  36. 36.
    Lü S, Liu M, Ni B. An injectable oxidized carboxymethylcellulose/N-succinyl-chitosan hydrogel system for protein delivery. Chem Eng J. 2010;160(2):779–87.Google Scholar
  37. 37.
    Lee LS, Lee SU, Che CY, Lee JE. Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells. Int J Ophthalmol. 2015;8(2):215–21.Google Scholar
  38. 38.
    Nayak S, Kundu SC. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res Part A. 2014;102(6):1928–40.Google Scholar
  39. 39.
    Roy N, Saha N, Humpolicek P, Saha P. Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater. 2010;8(4):338–57.Google Scholar
  40. 40.
    Park SN, Kim JK, Suh H. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials. 2004;25(17):3689–98.Google Scholar
  41. 41.
    Chen H, Fan M. Chitosan/Carboxymethyl Cellulose Polyelectrolyte Complex Scaffolds for Pulp Cells Regeneration. J Bioact Compat Polym. 2007;22(5):475–91.Google Scholar
  42. 42.
    Mohamed Amin Z, Koh SP, Yeap SK, Abdul Hamid NS, Tan CP, Long K. Efficacy study of broken rice maltodextrin in in vitro wound healing assay. Biomed Res Int. 2015.Google Scholar
  43. 43.
    Laurent T, Kacem I, Blanchemain N, Cazaux F, Neut C, Hildebrand HF, et al. Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater. Acta Materialia Inc.; 2011;7(8):3141–9.Google Scholar
  44. 44.
    Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol. 2000;18(2):163–7.Google Scholar
  45. 45.
    Fernandez-Estevez MA, Casarejos MJ, López Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose Reverses Cell Malfunction in Fibroblasts from Normal and Huntington’s Disease Patients Caused by Proteosome Inhibition. Borchelt DR, editor. PLoS One. 2014;9(2):e90202.Google Scholar
  46. 46.
    Lan CC, Liu IH, Fang AH, Wen CH, Wu CS. Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol. 2008;159(5):1103-1115.Google Scholar
  47. 47.
    Berge U, Behrens J, Rattan SIS. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci. 2007;1100(1):524-529.Google Scholar
  48. 48.
    Spravchikov N, Sizyakov G, Gartsbein M, Accili D, Tennenbaum T, Wertheimer E. Glucose Effects on Skin Keratinocytes Implications for Diabetes Skin Complications. Diabetes. 2001;50(7):1627–35.Google Scholar
  49. 49.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–5. Google Scholar
  50. 50.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis: An overview of cell death. Am. J. Pathol. 1995;146(1):3–15.Google Scholar
  51. 51.
    Stoddart MJ. Cell viability assays: Introduction. Methods Mol. Biol. 2011;740:1–6.Google Scholar
  52. 52.
    Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitr. 1998;12(3):251–8.Google Scholar
  53. 53.
    Černe K, Erman A, Veranič P. Analysis of cytotoxicity of melittin on adherent culture of human endothelial cells reveals advantage of fluorescence microscopy over flow cytometry and haemocytometer assay. Protoplasma. 2013;250(5):1131–7.Google Scholar
  54. 54.
    Kummrow A, Frankowski M, Bock N, Werner C, Dziekan T, Neukammer J. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytom Part A. 2013;83(2):197–204.Google Scholar
  55. 55.
    Jiménez-Hernández ME, Orellana G, Montero F, Portolés MT. A Ruthenium Probe for Cell Viability Measurement Using Flow Cytometry, Confocal Microscopy and Time-resolved Luminescence. Photochem Photobiol. American Society for Photobiology; 2007;72(1):28–34.Google Scholar
  56. 56.
    Fraser CG, Petersen PH. Desirable standards for laboratory tests if they are to fulfill medical needs. Clin Chem. 1993;39(7):1447-53.Google Scholar
  57. 57.
    US Food and Drug Administration. Inactive ingredient search for approved drug products. FDA Database. 2017.Google Scholar
  58. 58.
    US Department of Health and Human Services. US Food and Drug Adminstration: GRAS Substances (SCOGS) Database. 2015.Google Scholar
  59. 59.
    US Food and Drug Administration. Substances Added to Food (formerly EAFUS). US Department of Health and Human Services. 2018.Google Scholar
  60. 60.
    Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, Wakui M, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevices. 2005;7(3):185–8.Google Scholar
  61. 61.
    Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32(8-9):762-98.Google Scholar
  62. 62.
    Tchounwou CK, Yedjou CG, Farah I, Tchounwou PB. D-glucose-induced cytotoxic, genotoxic, and apoptotic effects on human breast adenocarcinoma (MCF-7) cells. J Cancer Sci Ther. 2014;6:156–60.Google Scholar
  63. 63.
    Lan C-CE, Wu C-S, Huang S-M, Kuo H-Y, Wu I-H, Liang CW, et al. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br J Dermatol. 2012;166(6):1221–9.Google Scholar
  64. 64.
    Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and Beyond: Cytometry in Studies of Programmed Cell Death. Methods Cell Biol. 2011;103:55-98.Google Scholar
  65. 65.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Programmed Cell Death (Apoptosis). Molecular Biology of the Cell, 4th edition. Garland Science; 2002.Google Scholar
  66. 66.
    Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007;35(4):495-516.Google Scholar
  67. 67.
    Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell. 2016;167(7):1693–704.Google Scholar
  68. 68.
    Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, et al. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem. 2003;51(7):873–85.Google Scholar
  69. 69.
    Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: Validity for neuronal apoptosis? J Neurosci Methods. 2000;96(2):147–52.Google Scholar
  70. 70.
    Donner KJ, Becker KM, Hissong BD, Ahmed SA. Comparison of multiple assays for kinetic detection of apoptosis in thymocytes exposed to dexamethasone or diethylstilbesterol. Cytometry. 1999;35(1):80–90.Google Scholar
  71. 71.
    Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1-2):167–90.Google Scholar
  72. 72.
    Mazumder S, Plesca D, Almasan A. Caspase-3 Activation is a Critical Determinant of Genotoxic Stress-Induced Apoptosis. Apoptosis and Cancer. Totowa, NJ: Humana Press. 2008:13–21.Google Scholar
  73. 73.
    Gurtu V, Kain SR, Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem. 1997;251(1):98–102.Google Scholar
  74. 74.
    Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. Elsevier; 2019;109:1249–58.Google Scholar
  75. 75.
    Donnelly RF, Singh TRR, Tunney MM, Morrow DIJ, McCarron PA, O’Mahony C, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.Google Scholar
  76. 76.
    McCrudden MTC, Alkilani AZ, Courtenay AJ, McCrudden CM, McCloskey B, Walker C, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. Springer Verlag; 2014;5(1):3–14.Google Scholar
  77. 77.
    Guidance FD. Use of International Standard ISO 10993-1 “Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process” Guidance for Industry and Food and Drug Administration Staff. US Department of Health and Human Services. Food and Drug Administration, Center for Devices and Radiological Health. 2016.Google Scholar
  78. 78.
    Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. Elsevier B.V.; 2012;161(2):446–60.Google Scholar
  79. 79.
    Hofman DL, van Buul VJ, Brouns FJPH. Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Crit Rev Food Sci Nutr. 2016;56(12):2091–100.Google Scholar
  80. 80.
    Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr Polym. Elsevier Ltd.; 2011;84(1):40–53.Google Scholar
  81. 81.
    Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet. Med. 2008;53(8):397-411.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ezgi P. Yalcintas
    • 1
  • Daniel S. Ackerman
    • 2
    • 3
  • Emrullah Korkmaz
    • 1
  • Cheryl A. Telmer
    • 3
  • Jonathan W. Jarvik
    • 2
    • 3
  • Phil G. Campbell
    • 3
    • 4
  • Marcel P. Bruchez
    • 2
    • 3
    • 5
  • O. Burak Ozdoganlar
    • 1
    • 4
    • 6
    Email author
  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA
  3. 3.Molecular Biosensor and Imaging CenterCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA
  6. 6.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations