Advertisement

Pharmaceutical Research

, 36:147 | Cite as

Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect

  • Anastasiia B. Shatan
  • Kristýna Venclíková
  • Beata A. Zasońska
  • Vitalii Patsula
  • Ognen Pop-Georgievski
  • Eduard Petrovský
  • Daniel HorákEmail author
Research Paper
  • 204 Downloads

Abstract

Purpose

The aim was to design and thoroughly characterize monodisperse Fe3O4@SiO2-Ag nanoparticles with strong antibacterial properties, which makes them a candidate for targeting bacterial infections.

Methods

The monodisperse Fe3O4 nanoparticles were prepared by oleic acid-stabilized thermal decomposition of Fe(III) oleate; the particles were coated with silica shell using a water-in-oil reverse microemulsion, involving hydrolysis and condensation of tetramethyl orthosilicate. Resulting Fe3O4@SiO2 particles were modified by (3-mercaptopropyl)trimethoxysilane to introduce 1.1 mmol SH/g. Finally, the Fe3O4@SiO2-SH nanoparticles were decorated with silver nanoclusters formed by reduction of silver nitrate with NaBH4. The particles were analyzed by FTIR, X-ray photoelectron and atomic absorption spectroscopy, dynamic light scattering and vibrating sample magnetometry. The antibacterial activity of the Fe3O4@SiO2 and Fe3O4@SiO2-Ag nanoparticles was tested against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria cultivated on Luria agar plates or in Luria broth.

Results

The superparamagnetic Fe3O4@SiO2-Ag nanoparticles (21 nm in diameter; saturation magnetization 26 A∙m2/kg) were successfully obtained and characterized. Inhibitory and toxic effects against bacteria were documented by incubation of the Fe3O4@SiO2-Ag nanoparticles with Staphylococcus aureus and Escherichia coli.

Conclusions

The combination of magnetic properties together with bactericidal effects is suitable for the disinfection of medical instruments, water purification, food packaging, etc.

KEY WORDS

antibacterial activity magnetic nanoparticles silica shell thiol-functionalization 

Abbreviations

AAS

Atomic absorption spectrometer

Amp

Ampicillin

CFU

Colony forming units

Ð

Dispersity

Dh

Hydrodynamic diameter

DLS

Dynamic light scattering

Dn

Number-average diameter

DT

1-Dodecanethiol

Dw

Weight-average diameter

E. coli

Escherichia coli

Igepal CO-520

Polyoxyethylene(5) nonylphenylether

IS

Icosane

LA

Luria agar plates

LB

Luria broth

MPTMS

(3-Mercaptopropyl)trimethoxysilane

NT

No treatment controls

OA

Oleic acid

OD

Octadec-1-ene

PBS

Phosphate buffered saline

PI

Polydispersity index

S. aureus

Staphylococcus aureus

SAM

Self-assembled monolayer

SBH

Sodium borohydride

TEM

Transmission electron microscope

TMOS

Tetramethyl orthosilicate

XPS

X-ray photoelectron spectroscopy

Notes

References

  1. 1.
    Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:155–64.CrossRefGoogle Scholar
  2. 2.
    Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;16:22–9.CrossRefGoogle Scholar
  3. 3.
    Lam SJ, Wong EHH, Boyer C, Qiao GQ. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.CrossRefGoogle Scholar
  4. 4.
    Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–49.CrossRefGoogle Scholar
  5. 5.
    Jennings MC, Minbiole KPC, Wuest WM. Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect Dis. 2015;1:288–303.CrossRefGoogle Scholar
  6. 6.
    Kim J, Pitts B, Stewart PS, Camper A, Yoon J. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother. 2008;52:1446–53.CrossRefGoogle Scholar
  7. 7.
    Draper LA, Cotter PD, Hill C, Ross RP. Lantibiotic resistance. Microbiol Mol Biol Rev. 2015;79:171–91.CrossRefGoogle Scholar
  8. 8.
    Clement JL, Jarrett PS. Antibacterial silver. Met Based Drugs. 1994;1:467–82.CrossRefGoogle Scholar
  9. 9.
    Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci. 2018;19:444.CrossRefGoogle Scholar
  10. 10.
    Radtsig MA, Koksharova OA, Khmel IA. Antibacterial effects of silver ions: effect on gram-negative bacteria growth and biofilm formation. Mol Genet Microbiol Virol. 2009;4:194–9.CrossRefGoogle Scholar
  11. 11.
    Gao SS, Zhao IS, Duffin S, Duangthip D, Lo ECM, Chu CH. Revitalising silver nitrate for caries management. Int J Environ Res Public Health. 2018;15:80.CrossRefGoogle Scholar
  12. 12.
    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–9.CrossRefGoogle Scholar
  13. 13.
    Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–53.CrossRefGoogle Scholar
  14. 14.
    Cornell RM, Schwertmann U. The Iron oxides: structure, properties, reactions, occurrences and uses. second ed. Darmstadt, Germany: Wiley; 2000.Google Scholar
  15. 15.
    Laurent S, Forge D, Port M, Roch A, Robic C, van der Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.CrossRefGoogle Scholar
  16. 16.
    Chaudhuri GR, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;11:2373–433.CrossRefGoogle Scholar
  17. 17.
    Bergna HE, Roberts WO. Colloidal silica: fundamentals and applications. Santa Barbara, USA: CRC Press; 2005.Google Scholar
  18. 18.
    Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.CrossRefGoogle Scholar
  19. 19.
    Prabhu YT, Rao KV, Kumari BS, Kumar VSS, Pavani T. Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett. 2015;5:85–92.CrossRefGoogle Scholar
  20. 20.
    Ismail RA, Sulaiman GM, Abdulrahman SA, Marzoog TR. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater Sci Eng C. 2015;53:286–97.CrossRefGoogle Scholar
  21. 21.
    Bhattacharya P, Neogi S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents. Mater Res Express. 2017;4:095005.CrossRefGoogle Scholar
  22. 22.
    Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano. 2012;6:2656–64.CrossRefGoogle Scholar
  23. 23.
    Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, et al. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–13.CrossRefGoogle Scholar
  24. 24.
    Jiang J, Gu H, Shao H, Devlin E. Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater. 2008;20:4403–7.Google Scholar
  25. 25.
    Liu XM, Li YS. One-step facile fabrication of Ag/γ-Fe2O3 composite microspheres. Mater Sci Eng C. 2009;29:1128–32.Google Scholar
  26. 26.
    Lee D, Cohen RE, Rubner MF. Antibacterial properties of ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21:9651–9.CrossRefGoogle Scholar
  27. 27.
    Zhang X, Niu H, Yan J, Cai Y. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloid Surf A. 2011;375:186–92.CrossRefGoogle Scholar
  28. 28.
    Patsula V, Petrovský E, Kovářová J, Konefal R, Horák D. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid Polym Sci. 2014;292:2097–110.CrossRefGoogle Scholar
  29. 29.
    Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Dobrivojević Radmilović M, et al. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4&SiO2 core–shell nanoparticles. RSC Adv. 2017;7:8786–97.CrossRefGoogle Scholar
  30. 30.
    Kostiv U, Janoušková O, Šlouf M, Kotov N, Engstová H, Smolková K, et al. Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties. Nanoscale. 2015;7:18096–104.CrossRefGoogle Scholar
  31. 31.
    Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH. Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mat. 2012;24:4572–80.CrossRefGoogle Scholar
  32. 32.
    Li M, Wu W, Qiao R, Tan L, Li Z, Zhang Y. Ag-decorated Fe3O4@SiO2 core-shell nanospheres: seed-mediated growth preparation and their antibacterial activity during the consecutive recycling. J Alloys Compd. 2016;676:113–9.CrossRefGoogle Scholar
  33. 33.
    Cai Y, Tan F, Qiao X, Wang W, Chen J, Qiu X. Room-temperature synthesis of silica supported silver nanoparticles in basic ethanol solution and their antibacterial activity. RSC Adv. 2016;6:18407–12.CrossRefGoogle Scholar
  34. 34.
    Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One. 2013;8:e57070.CrossRefGoogle Scholar
  35. 35.
    Garland ER, Rosen EP, Clarke LI, Baer T. Structure of submonolayer oleic acid coverages on inorganic aerosol particles: evidence of island formation. Phys Chem Chem Phys. 2008;10:3156–61.CrossRefGoogle Scholar
  36. 36.
    Dunlop D, Ozdemir O. Rock Magnetism: Fundamentals and Frontiers. Cambridge, UK: Cambridge University Press; 1997.CrossRefGoogle Scholar
  37. 37.
    Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, et al. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 2011;3:225–32.CrossRefGoogle Scholar
  38. 38.
    Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep. 2017;7:9894.CrossRefGoogle Scholar
  39. 39.
    Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314:274–80.CrossRefGoogle Scholar
  40. 40.
    Hajipour MJ, Fromm KM, Ashkarran AA, Aberasturi DJ, Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511.CrossRefGoogle Scholar
  41. 41.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.CrossRefGoogle Scholar
  42. 42.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101.CrossRefGoogle Scholar
  43. 43.
    Yuan YG, Peng QL, Gurunathan S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci. 2017;18:569.CrossRefGoogle Scholar
  44. 44.
    Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69:4278–81.CrossRefGoogle Scholar
  45. 45.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.CrossRefGoogle Scholar
  46. 46.
    Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;2015:720654.CrossRefGoogle Scholar
  47. 47.
    Yoon SS, Barrangou-Poueys R, Breidt F, Fleming HP. Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. J Microbiol Biotechnol. 2007;17:262–70.PubMedGoogle Scholar
  48. 48.
    Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.CrossRefGoogle Scholar
  49. 49.
    Neal AL. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008;17:362–71.CrossRefGoogle Scholar
  50. 50.
    Vidanapathirana AK, Thompson LC, Herco M, Odom J, Sumner SJ, Fennell TR, et al. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod Toxicol. 2018;75:10–22.CrossRefGoogle Scholar
  51. 51.
    Li L, Cui J, Liu Z, Zhou X, Li Z, Yu Y, et al. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum–mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett. 2018;285:156–67.CrossRefGoogle Scholar
  52. 52.
    Jiang X, Lu C, Tang M, Yang Z, Jia W, Ma Y, et al. Nanotoxicity of silver nanoparticles on HEK293T cells: a combined study using biomechanical and biological techniques. ACS Omega. 2018;3:6770–8.CrossRefGoogle Scholar
  53. 53.
    Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, et al. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. 2014;34:1155–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryCzech Academy of SciencesPrague 6Czech Republic
  2. 2.Institute of GeophysicsCzech Academy of SciencesPrague 4Czech Republic

Personalised recommendations