Advertisement

Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines

  • Justine Wallyn
  • Nicolas AntonEmail author
  • Salman Akram
  • Thierry F. Vandamme
Expert Review

Abstract

This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.

Keywords

contrast agent magnetic resonance imaging medical imaging nanomedicine x-ray imaging 

Abbreviations

2D

2-Dimension

3D

3-Dimension

API

Active principle ingredient

CA

Contrast agent

CNS

Central nervous system

CT

Computed tomography

DDS

Drug delivery system

DEs

Dendrimers

EPR

Enhanced permeability and retention

FDA

Food and drug administration

GI

Gastrointestinal

HDL

High-density lipoprotein

HU

Hounsfield unit

IONPs

Iron oxide nanoparticles

LDL

Low-density lipoprotein

LPs

Liposomes

LPPs

Lipoproteins

NCs

Nanocarriers

NMR

Nuclear magnetic resonance

NPs

Nanoparticles

MRI

Magnetic resonance imaging

PAMAM

Poly(Amidoamine)

PCL

Poly(ε-Caprolactone)

PEG

Poly(Ethylene Glycol)

PLA

Poly(Lactic Acid)

PLGA

Poly(Lactic-co-Glycolic Acid)

PET

Positron emission tomography

PO

Poly(Propylene Oxide)

RES

Reticuloendothelial system

ROI

Region of interest

SPECT

Single-photon emission computed tomography

SPIONs

Superparamagnetic iron oxide nanoparticles

USPIOs

Ultrasmall superparamagnetic iron oxide

VLDL

Very low-density lipoprotein

Notes

References

  1. 1.
    Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399(1):3–27.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine. 2014;9:711–26.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Li X, Anton N, Zuber G, Vandamme T. Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev. 2014;76:116–33.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Polymeric nanostructures for imaging and therapy. Chem Rev. 2015;115(19):10967–1011.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2(2):115–52.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.CrossRefPubMedGoogle Scholar
  7. 7.
    Koo V, Hamilton PW, Williamson K. Non-invasive in vivo imaging in small animal research. Cell Oncol. 2006;28(4):127–39.PubMedCentralPubMedGoogle Scholar
  8. 8.
    van der Vaart MG, Meerwaldt R, Slart RH, van Dam GM, Tio RA, Zeebregts CJ. Application of PET/SPECT imaging in vascular disease. Eur J Vasc Endovasc Surg. 2008;35(5):507–13.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang Q, Zeng Z. A review on real-time 3D ultrasound imaging technology. Biomed Res Int. 2017;2017:6027029.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol. 2010;65(7):567–81.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Volkov Y. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun. 2015;468(3):419–27.CrossRefGoogle Scholar
  13. 13.
    He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces. 2014;124:118–31.CrossRefGoogle Scholar
  14. 14.
    Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget. 2016;7(30):48753–87.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Bouchaala R, Mercier L, Andreiuk B, Mely Y, Vandamme T, Anton N, et al. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J Control Release. 2016;236:57–67.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kilin VN, Anton H, Anton N, Steed E, Vermot J, Vandamme TF, et al. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish. Biomaterials. 2014;35(18):4950–7.CrossRefGoogle Scholar
  17. 17.
    Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv. 2012;2(31):11876–86.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Wu C, Gleysteen J, Teraphongphom NT, Li Y, Rosenthal E. In-vivo optical imaging in head and neck oncology: basic principles, clinical applications and future directions. Int J Oral Sci. 2018;10(2):10.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Wang C, Wang Z, Zhao T, Li Y, Huang G, Sumer BD, et al. Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials. 2018;157:62–75.CrossRefGoogle Scholar
  20. 20.
    Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Noone TC, Semelka RC, Chaney DM, Reinhold C. Abdominal imaging studies: comparison of diagnostic accuracies resulting from ultrasound, computed tomography, and magnetic resonance imaging in the same individual. Magn Reson Imaging. 2004;22(1):19–24.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oliva MR, Saini S. Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging. 2004;4:S42–6.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging. 2001;13(3):397–401.CrossRefGoogle Scholar
  24. 24.
    Elstob A, Gonsalves M, Patel U. Diagnostic modalities. Int J Surg. 2016;36:504–12.CrossRefGoogle Scholar
  25. 25.
    Elias J, Semelka RC, Altun E, Tsurusaki M, Pamuklar E, Zapparoli M, et al. Pancreatic cancer: correlation of MR findings, clinical features, and tumor grade. J Magn Reson Imaging. 2007;26(6):1556–63.CrossRefGoogle Scholar
  26. 26.
    Casciato M, editor. Cuatro Europeos en Chandigarh. LC+Pierre Jeanneret, Jane Drew & Maxwell Fry. RA Rev Arquit. 2010;12:17–24.Google Scholar
  27. 27.
    Rontgen WC. On a new kind of rays. Science. 1896;3(59):227–31.CrossRefGoogle Scholar
  28. 28.
    Leung S. Treatment of pediatric genitourinary malignancy with interstitial brachytherapy: Peter MacCallum Cancer Institute experience with four cases. Int J Radiat Oncol Biol Phys. 1995;31(2):393–8.CrossRefGoogle Scholar
  29. 29.
    Yu SB, Watson AD. Metal-based X-ray contrast media. Chem Rev. 1999;99(9):2353–78.CrossRefGoogle Scholar
  30. 30.
    Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T. Iodinated blood pool contrast media for preclinical X-ray imaging applications–a review. Biomaterials. 2010;31(24):6249–68.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jakhmola A, Anton N, Vandamme TF. Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthc Mater. 2012;1(4):413–31.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9(1):37–52.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    De La Vega JC, Hafeli UO. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications. Contrast Media Mol Imaging. 2015;10(2):81–95.CrossRefGoogle Scholar
  35. 35.
    Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53(19):R319–50.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol. 2002;20(8):S34–9.CrossRefGoogle Scholar
  37. 37.
    Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods. 2010;50(1):2–13.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ritman EL. Small-animal CT - its difference from, and impact on, clinical CT. Nucl Instrum Methods Phys Res A. 2007;580(2):968–70.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jones JG, Mills CN, Mogensen MA, Lee CI. Radiation dose from medical imaging: a primer for emergency physicians. West J Emerg Med. 2012;13(2):202–10.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Idee JM, Guiu B. Use of lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol. 2013;88(3):530–49.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Widmark JM. Imaging-related medications: a class overview. Proc (Bayl Univ Med Cent). 2007;20(4):408–17.CrossRefGoogle Scholar
  43. 43.
    Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol. 2004;14(11):2099–104.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zagorchev L, Oses P, Zhuang ZW, Moodie K, Mulligan-Kehoe MJ, Simons M, et al. Micro computed tomography for vascular exploration. J Angiogenes Res. 2010;2:7.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Kandanapitiye MS, Gao M, Molter J, Flask CA, Huang SD. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal clearable particulate CT contrast agents. Inorg Chem. 2014;53(19):10189–94.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Briguori C, Tavano D, Colombo A. Contrast agent—associated nephrotoxicity. Prog Cardiovasc Dis. 2003;45(6):493–503.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bottinor W, Polkampally P, Jovin I. Adverse reactions to iodinated contrast media. Int J Angiol. 2013;22(3):149–54.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Suckow CE, Stout DB. MicroCT liver contrast agent enhancement over time, dose, and mouse strain. Mol Imaging Biol. 2008;10(2):114–20.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Anton N, Vandamme TF. Nanotechnology for computed tomography: a real potential recently disclosed. Pharm Res. 2014;31(1):20–34.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol. 2009;29(7):992–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    McClatchy DM, Zuurbier RA, Wells WA, Paulsen KD, Pogue BW. Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology. Breast Cancer Res Treat. 2018;172(3):587–95.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Qiu SQ, Dorrius MD, de Jongh SJ, Jansen L, de Vries J, Schroder CP, et al. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: a feasibility study in breast conserving surgery. Eur J Surg Oncol. 2018;44(11):1708–13.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Centeno EH, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–39.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    O'Sullivan JDB, Behnsen J, Starborg T, MacDonald AS, Phythian-Adams AT, Else KJ, et al. X-ray micro-computed tomography (muCT): an emerging opportunity in parasite imaging. Parasitology. 2018;145(7):848–54.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tang R, Saksena M, Coopey SB, Fernandez L, Buckley JM, Lei L, et al. Intraoperative micro-computed tomography (micro-CT): a novel method for determination of primary tumour dimensions in breast cancer specimens. Br J Radiol. 2016;89(1058):20150581.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14(14):2161–75.CrossRefGoogle Scholar
  58. 58.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Louis R. Hawaiian place names: mnemonic symbols in a hawaiian performance cartography. In: Paper read at Indigenous Knowledges Conference. Wellington, NZ: Rutherford House, Pipitea Campus, Victoria University; 2005. p. 167–81.Google Scholar
  60. 60.
    Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, et al. Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(4):320–8.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171(3976):1151–3.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242(5394):190–1.CrossRefGoogle Scholar
  63. 63.
    Garroway AN, Grannell PK, Mansfield P. Image formation in NMR by a selective irradiative process. J Phys C Solid State Phys. 1974;7(24):L457–62.CrossRefGoogle Scholar
  64. 64.
    Mansfield P, Maudsley A. Medical imaging by NMR. J Magn Reson. 1980;27:101–19.Google Scholar
  65. 65.
    Edelstein WA, Hutchison JM, Johnson G, Redpath T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol. 1980;25(4):751–6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hutchinson JMS, Edelstein WA, Johnson G. A whole-body NMR imaging machine. J Physics E: Sci Instrum. 1980;13(9):947–55.CrossRefGoogle Scholar
  67. 67.
    Pykett IL, Rzedzian RR. Instant images of the body by magnetic resonance. Magn Reson Med. 1987;5(6):563–71.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–48.CrossRefGoogle Scholar
  69. 69.
    Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol. 1999;9(6):1032–46.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–49.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K. MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem. 2007;7(3):291–305.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2009;4(1):1–23.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36(5):1060–71.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sahraei Z, Mirabzadeh M, Fadaei-Fouladi D, Eslami N, Eshraghi A. Magnetic resonance imaging contrast agents: a review of literature. J Pharm Care. 2014;2:177–82.Google Scholar
  75. 75.
    Chen W, Cormode DP, Fayad ZA, Mulder WJM. Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(2):146–61.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.CrossRefGoogle Scholar
  77. 77.
    Y-XJ W. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.Google Scholar
  78. 78.
    Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015;21(47):13400–2.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319–31.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58(14):1471–504.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J. 2010;6(2):e12.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Wan J, Cai W, Meng X, Liu E. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun (Camb). 2007;4(47):5004–6.CrossRefGoogle Scholar
  83. 83.
    Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, et al. Multifunctional Fe3O4/TaO(x) core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc. 2012;134(25):10309–12.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP, et al. Multifunctional imaging nanoprobes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(2):138–50.PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Bardhan R, Chen W, Bartels M, Perez-Torres C, Botero MF, McAninch RW, et al. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett. 2010;10(12):4920–8.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Yang J, Lim EK, Lee HJ, Park J, Lee SC, Lee K, et al. Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials. 2008;29(16):2548–55.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hagit A, Soenke B, Johannes B, Shlomo M. Synthesis and characterization of dual modality (CT/MRI) core-shell microparticles for embolization purposes. Biomacromolecules. 2010;11(6):1600–7.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, et al. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomedicine. 2014;9:2527–38.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics. 2012;2(11):1040–53.PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–9.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Ashton JR, Castle KD, Qi Y, Kirsch DG, West JL, Badea CT. Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics. 2018;8(7):1782–97.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Barsanti C, Lenzarini F, Kusmic C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes. 2015;6(6):792–806.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan D, Hu G, et al. Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano. 2009;3(12):3917–26.PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Xu L, Cheng L, Wang C, Peng R, Liu Z. Conjugated polymers for photothermal therapy of cancer. Polym Chem. 2014;5(5):1573–80.CrossRefGoogle Scholar
  95. 95.
    Kumar S, Daverey A, Khalilzad-Sharghi V, Sahu NK, Kidambi S, Othman SF, et al. Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia. RSC Adv. 2015;5(66):53180–8.CrossRefGoogle Scholar
  96. 96.
    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.CrossRefGoogle Scholar
  97. 97.
    Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, et al. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano. 2014;8(4):3107–22.PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology. 2012;263(3):633–43.PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Morse MD. Clusters of transition-metal atoms. Chem Rev. 1986;86(6):1049–109.CrossRefGoogle Scholar
  100. 100.
    Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev. 1989;89(8):1861–73.CrossRefGoogle Scholar
  101. 101.
    Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond. 1857;147:145–81.CrossRefGoogle Scholar
  102. 102.
    Goesmann H, Feldmann C. Nanoparticulate functional materials. Angew Chem Int Ed Engl. 2010;49(8):1362–95.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14(11):21266–305.PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Indira T, Lakshmi P. Magnetic nanoparticles - a review. Int J Pharm Sci Nanotech. 2010;3:1035–42.Google Scholar
  105. 105.
    Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Bomati-Miguel O, Roca AG, et al. Biomedical applications of magnetic nanoparticles. In: KHJ B, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2007. p. 1–7.Google Scholar
  106. 106.
    Tyndall J. On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally. Proc R Soc Lond. 1868;17:223–33.Google Scholar
  107. 107.
    Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys. 1908;330(3):377–445.CrossRefGoogle Scholar
  108. 108.
    Young A. Rayleigh scattering. Appl Opt. 1981;20(4):533–5.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42(8):1097–107.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9(2):E128–47.PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Liang Y, Hilal N, Langston P, Starov V. Interaction forces between colloidal particles in liquid: theory and experiment. Adv Colloid Interface Sci. 2007;134–135:151–66.CrossRefGoogle Scholar
  112. 112.
    Verwey E, Overbeek J, van Nes K. Theory of the stability of lyophobic colloids-the interactions of soil particles having an electrical double layer. Amsterdam: Elsevier; 1948. p. 631–6.Google Scholar
  113. 113.
    Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. Tuning the magnetic properties of nanoparticles. Int J Mol Sci. 2013;14(8):15977–6009.PubMedCentralCrossRefPubMedGoogle Scholar
  114. 114.
    Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.CrossRefGoogle Scholar
  115. 115.
    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428–37.PubMedCentralCrossRefPubMedGoogle Scholar
  116. 116.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.CrossRefGoogle Scholar
  118. 118.
    Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cell. 2011;31(4):295–302.CrossRefGoogle Scholar
  119. 119.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.CrossRefGoogle Scholar
  120. 120.
    Yu M, Huang S, Yu KJ, Clyne AM. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci. 2012;13(5):5554–70.PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Shaterabadi Z, Nabiyouni G, Soleymani M. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2017;75:947–56.CrossRefGoogle Scholar
  122. 122.
    Kenley RA, Lee MO, Mahoney TR, Sanders LM. Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules. 1987;20(10):2398–403.CrossRefGoogle Scholar
  123. 123.
    Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.CrossRefGoogle Scholar
  124. 124.
    Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release. 2001;70(3):353–63.CrossRefGoogle Scholar
  125. 125.
    Alvarez-Lorenzo C, Rey-Rico A, Sosnik A, Taboada P, Concheiro A. Poloxamine-based nanomaterials for drug delivery. Front Biosci (Elite Ed). 2010;2:424–40.CrossRefGoogle Scholar
  126. 126.
    Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17(1):31–48.CrossRefGoogle Scholar
  127. 127.
    Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45.CrossRefGoogle Scholar
  128. 128.
    Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev. 1995;16(2):141–55.CrossRefGoogle Scholar
  129. 129.
    Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev. 2002;54(2):235–52.CrossRefGoogle Scholar
  130. 130.
    Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31(3):438–48.CrossRefGoogle Scholar
  131. 131.
    Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–9.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.PubMedCentralCrossRefPubMedGoogle Scholar
  133. 133.
    Anderson DR, Grillo-Lopez A, Varns C, Chambers KS, Hanna N. Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin's B-cell lymphoma. Biochem Soc Trans. 1997;25(2):705–8.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95(1):135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Baek SE, Lee KH, Park YS, Oh DK, Oh S, Kim KS, et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release. 2014;196:234–42.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release. 2013;171(2):152–62.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011;63(14–15):1361–70.PubMedCentralCrossRefPubMedGoogle Scholar
  139. 139.
    Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A. 2015;112(40):12486–91.PubMedCentralCrossRefPubMedGoogle Scholar
  140. 140.
    Yuan Y, Zhang L, Cao H, Yang Y, Zheng Y, Yang X-J. A polyethylenimine-containing and transferrin-conjugated lipid nanoparticle system for antisense oligonucleotide delivery to AML. Biomed Res Int. 2016;2016:8.Google Scholar
  141. 141.
    Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A. 2013;110(21):8662–7.PubMedCentralCrossRefPubMedGoogle Scholar
  142. 142.
    Liu K, Dai L, Li C, Liu J, Wang L, Lei J. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol-dihydroartemisinin conjugate. Sci Rep. 2016;6:29461.PubMedCentralCrossRefPubMedGoogle Scholar
  143. 143.
    Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–804.PubMedCentralCrossRefPubMedGoogle Scholar
  144. 144.
    Dijkgraaf I, Kruijtzer JAW, Frielink C, Corstens FHM, Oyen WJG, Liskamp RMJ, et al. αvβ3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer. 2007;120(3):605–10.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng. 1999;1:241–63.CrossRefPubMedGoogle Scholar
  146. 146.
    Peng C, Qin J, Zhou B, Chen Q, Shen M, Zhu M, et al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem. 2013;4(16):4412–24.CrossRefGoogle Scholar
  147. 147.
    Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem. 2007;101(4):805–15.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.CrossRefGoogle Scholar
  150. 150.
    Gallo J, García I, Padro D, Arnáiz B, Penadés S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: synthesis and characterization. J Mater Chem. 2010;20(44):10010–20.CrossRefGoogle Scholar
  151. 151.
    Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM, et al. Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci. 2005;286(1):187–94.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Sahoo B, Devi KSP, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Bae H, Ahmad T, Rhee I, Chang Y, Jin SU, Hong S. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett. 2012;7:31–44.CrossRefGoogle Scholar
  154. 154.
    He W, Ai K, Lu L. Nanoparticulate X-ray CT contrast agents. Sci China Chem. 2015;58(5):753–60.CrossRefGoogle Scholar
  155. 155.
    Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine. 2014;10(1):19–34.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Hu H-P, Chan H, Ujiie H, Bernards N, Fujino K, Irish JC, et al. Nanoparticle-based CT visualization of pulmonary vasculature for minimally-invasive thoracic surgery planning. PLoS One. 2019;14(1):e0209501.PubMedCentralCrossRefPubMedGoogle Scholar
  157. 157.
    Ashton JR, Gottlin EB, Patz EF, West JL, Badea CT. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One. 2018;13(11):e0206950.PubMedCentralCrossRefPubMedGoogle Scholar
  158. 158.
    Ghaghada K, Starosolski Z, Stupin I, Sarkar P, Annapragada A. Interrogation of evolving tumor vasculature using high-resolution CT imaging and a nanoparticle contrast agent. In: Proceedigns of the SPIE 10578, medical imaging 2018: biomedical applications in molecular, structural, and functional imaging, 105781C (2018). Houston: SPIE; 2018.Google Scholar
  159. 159.
    Theerasilp M, Sungkarat W, Nasongkla N. Synthesis and characterization of SPIO-loaded PEG-b-PS micelles as contrast agent for long-term nanoparticle-based MRI phantom. Bull Mater Sci. 2018;41(2):42.CrossRefGoogle Scholar
  160. 160.
    Leftin A, Koutcher JA. Quantification of nanoparticle enhancement in polarized breast tumor macrophage deposits by spatial analysis of MRI and histological iron contrast using computer vision. Contrast Media Mol Imaging. 2018;2018:3526438.PubMedCentralCrossRefPubMedGoogle Scholar
  161. 161.
    Curley SM, Castracane J, Bergkvist M, Cady NC. Functionalization and characterization of an MRI-capable, targeted nanoparticle platform for delivery to the brain. MRS Adv. 2018;3(50):3027–32.CrossRefGoogle Scholar
  162. 162.
    Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, et al. Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study. Br J Radiol. 2018;91(1092):20180461.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int. 2014;2014:814208.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Marie H, Lemaire L, Franconi F, Lajnef S, Frapart Y-M, Nicolas V, et al. Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater. 2015;25(8):1258–69.CrossRefGoogle Scholar
  165. 165.
    Wang SH, Shi X, Van Antwerp M, Cao Z, Swanson SD, Bi X, et al. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater. 2007;17(16):3043–50.CrossRefGoogle Scholar
  166. 166.
    Tartaj P, Morales MDP, Veintemillas-Verdaguer S, Gonzlez-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R182–97.CrossRefGoogle Scholar
  167. 167.
    Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea GZLD, Sosa-Ferreyra CF, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater. 2014;2014:19.CrossRefGoogle Scholar
  168. 168.
    Sangwan Y, Hooda T, Kumar H. Nanoemulsions: a pharmaceutical review. Int J Pharma Prof Res. 2014;5(2):1031–8.Google Scholar
  169. 169.
    Mishra R, Son IG, Mishra R. A review article: on nanoemulsion. World J Pharm Pharm Sci. 2014;3:258–74.Google Scholar
  170. 170.
    Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28(5):978–85.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Vandamme TF, Anton N. Low-energy nanoemulsification to design veterinary controlled drug delivery devices. Int J Nanomedicine. 2010;5:867–73.PubMedCentralCrossRefPubMedGoogle Scholar
  172. 172.
    Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, et al. Iodinated alpha-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials. 2013;34(2):481–91.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Attia MF, Anton N, Akasov R, Chiper M, Markvicheva E, Vandamme TF. Biodistribution and toxicity of X-ray iodinated contrast agent in nano-emulsions in function of their size. Pharm Res. 2016;33(3):603–14.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, et al. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano. 2014;8(10):10537–50.CrossRefGoogle Scholar
  176. 176.
    Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, et al. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials. 2009;30(36):6947–54.PubMedCentralCrossRefPubMedGoogle Scholar
  177. 177.
    Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.CrossRefGoogle Scholar
  178. 178.
    Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77.PubMedCentralCrossRefPubMedGoogle Scholar
  179. 179.
    Trubetskoy VS. Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev. 1999;37(1–3):81–8.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3(3):1215–42.CrossRefGoogle Scholar
  182. 182.
    Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–57.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, et al. Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials. 2007;28(36):5555–61.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Fuchs AV, Gemmell AC, Thurecht KJ. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem. 2015;6(6):868–80.CrossRefGoogle Scholar
  187. 187.
    Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55.PubMedCentralCrossRefPubMedGoogle Scholar
  188. 188.
    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8–21.CrossRefGoogle Scholar
  189. 189.
    Benzina A, Kruft MA, Bar F, van der Veen FH, Bastiaansen CW, Heijnen V, et al. Studies on a new radiopaque polymeric biomaterial. Biomaterials. 1994;15(14):1122–8.CrossRefGoogle Scholar
  190. 190.
    Mawad D, Mouaziz H, Penciu A, Mehier H, Fenet B, Fessi H, et al. Elaboration of radiopaque iodinated nanoparticles for in situ control of local drug delivery. Biomaterials. 2009;30(29):5667–74.CrossRefGoogle Scholar
  191. 191.
    Pimpha N, Chaleawlert-umpon S, Sunintaboon P. Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization. Polymer. 2012;53(10):2015–22.CrossRefGoogle Scholar
  192. 192.
    Galperin A, Margel S. Synthesis and characterization of radiopaque magnetic core-shell nanoparticles for X-ray imaging applications. J Biomed Mater Res B Appl Biomater. 2007;83(2):490–8.CrossRefGoogle Scholar
  193. 193.
    Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology. 2011;22(15):155101.CrossRefGoogle Scholar
  194. 194.
    Kim D, Kim J, Jeong Y, Jon S. Antibiofouling polymer coated gold @ iron oxide nanoparticle ( GION ) as a dual contrast agent for CT and MRI. Bull Kor Chem Soc. 2009;30(8):1855–7.CrossRefGoogle Scholar
  195. 195.
    Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA. High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(2):169–76.CrossRefGoogle Scholar
  196. 196.
    Ng KK, Lovell JF, Zheng G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res. 2011;44(10):1105–13.PubMedCentralCrossRefPubMedGoogle Scholar
  197. 197.
    Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, et al. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano. 2013;7(11):9761–70.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Sabnis S, Sabnis NA, Raut S, Lacko AG. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. Int J Nanomedicine. 2017;12:1453–64.PubMedCentralCrossRefPubMedGoogle Scholar
  199. 199.
    Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8(11):3715–23.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Strasbourg, CNRS, CAMB UMR 7199StrasbourgFrance

Personalised recommendations