Skip to main content

Advertisement

Log in

A Comprehensive Physicochemical, In Vitro and Molecular Characterization of Letrozole Incorporated Chitosan-Lipid Nanocomplex

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to show a new mesomicroscopic insight into Letrozole (LTZ) loaded nanocomplexes and their ex vivo characteristics as a drug delivery system.

Methods

The LTZ loaded hybrid chitosan-based carrier was fabricated using a modified ionic crosslinking technique and characterized in more detail. To understand the mechanism of LTZ action encapsulated in the hybrid polymer-lipid carrier, all-atom molecular dynamics simulations were also used.

Results

The physicochemical properties of the carrier demonstrated the uniform morphology, but different drug loading ratios. In vitro cytotoxic activity of the optimized carrier demonstrated IC50 of 67.85 ± 0.55 nM against breast cancer cell line. The ex vivo study showed the positive effect of nanocomplex on LTZ permeability 7–10 fold greater than the free drug. The molecular dynamic study also confirmed the prsence of hydrophobic peak of lipids at a distance of 5 Å from the center of mass of LTZ which proved drug entrapment in the core of nanocomplex.

Conclusions

The hybrid nanoparticle increased the cytotoxicity and tissue permeability of LTZ for oral delivery. This study also confirmed the atomic mesostructures and interaction of LTZ in the core of hybrid polymer-lipid nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COM :

Center of mass

CS :

Chitosan

DSC :

Differential scanning calorimetric

EE :

Entrapment efficiency

FT-IR :

Fourier transform infrared spectroscopy

GI :

Gastrointestinal

IC 50 :

Half-maximal inhibitory concentration

K :

Dissolution rate constant

LC :

Loading capacity

LTZ :

Letrozole

MD :

Molecular dynamics

MTT :

3-(4,5-dimethyl- thiazol-2yl)-2,5-diphenyltetrazolium bromide

NPs :

Nanoparticles

Papp :

Apparent permeability coefficients

PBS :

Phosphate buffered saline

PCS :

Photon correlation spectroscopy

PDI :

Polydispersity index

P-gp :

P-glycoprotein

PLN :

Polymer – lipid hybrid nanoparticle

R 2 :

Correlation coefficient

RMSD :

Root mean square deviation

RSD :

Relative standard deviation

SA :

Stearic acid

SASA :

Solvent accessible surface area

SD :

Standard deviation

SEM :

Scanning electron microscopy

SGF :

Simulated gastric fluid

SIF :

Simulated intestinal fluid

SLNs :

Solid lipid nanoparticles

SPSS :

Statistical package for the social sciences software

TPG :

Tripalmitin glyceride

TPP :

Pentasodium tripolyphosphate

References

  1. Siddiqa AJ, Chaudhury K, Adhikari B. Letrozole dispersed on poly (vinyl alcohol) anchored maleic anhydride grafted low density polyethylene: a controlled drug delivery system for treatment of breast cancer. Colloid Surface B. 2014;116:169–75.

    Article  CAS  Google Scholar 

  2. Kazemi S, Sarabi AA, Abdouss M. Synthesis and characterization of magnetic molecularly imprinted polymer nanoparticles for controlled release of letrozole. Korean J Chem Eng. 2016;33(11):3289–97.

    Article  CAS  Google Scholar 

  3. Mondal N, Pal T, Ghosal S. Development, physical characterization, micromeritics and in vitro release kinetics of letrozole loaded biodegradable nanoparticles. Die Pharmazie. 2008;63(5):361–5.

    CAS  PubMed  Google Scholar 

  4. Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloid Surface B. 2010;76(1):292–7.

    Article  CAS  Google Scholar 

  5. Ding Y, Shen SZ, Sun H, Sun K, Liu F, Qi Y, et al. Design and construction of polymerized-chitosan coated Fe3 O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng. 2015;48:487–98.

    Article  CAS  Google Scholar 

  6. Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol. 2016;34(4):414–8.

    Article  CAS  Google Scholar 

  7. Fan M, Ma Y, Tan H, Jia Y, Zou S, Guo S, et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater Sci Eng. 2017;71:67–74.

    Article  CAS  Google Scholar 

  8. Farhadian N, Godiny M, Moradi S, Azandaryani AH, Shahlaei M. Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: development, characterization and process optimization. Mater Sci Eng. 2018;92:540–6.

    Article  CAS  Google Scholar 

  9. Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids 2014;181(0):56–61.

  10. Garg A, Bhalala K, Tomar DS. Wahajuddin. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles. Int J Pharm. 2017;516(1–2):120–30.

    Article  CAS  Google Scholar 

  11. Ridolfi DM, Marcato PD, Justo GZ, Cordi L, Machado D, Durán N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloid Surface B. 2012;93:36–40.

    Article  CAS  Google Scholar 

  12. Moradi S, Taran M, Shahlaei M. Investigation on human serum albumin and gum Tragacanth interactions using experimental and computational methods. Int J Biol Macromol. 2018;107:2525–33.

    Article  CAS  Google Scholar 

  13. Azandaryani AH, Kashanian S, Derakhshandeh K. Folate conjugated hybrid Nanocarrier for targeted Letrozole delivery in breast Cancer treatment. Pharm Res. 2017;34(12):2798–808.

    Article  Google Scholar 

  14. Motiei M, Kashanian S, Taherpour A. Hydrophobic amino acids grafted onto chitosan: a novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev Ind Pharm. 2017;43(1):1–11.

    Article  CAS  Google Scholar 

  15. Afshari M, Derakhshandeh K, Hosseinzadeh L. Characterisation, cytotoxicity and apoptosis studies of methotrexate-loaded PLGA and PLGA-PEG nanoparticles. J Microencapsul. 2013;31(3):239–45.

    Article  Google Scholar 

  16. Mohapatra S, Kar RK, Sahoo SK. Goodness of fit model dependent approaches of controlled release matrix tablets of zidovudine. Indian J Pharm Edu. 2016;50(1).

  17. Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 2014;41(5):3521–7.

    Article  CAS  Google Scholar 

  18. Stigliani M, Haghi M, Russo P, Young PM, Traini D. Antibiotic transport across bronchial epithelial cells: effects of molecular weight, LogP and apparent permeability. Eur J Pharm Sci. 2016;83:45–51.

    Article  CAS  Google Scholar 

  19. Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J. Interaction models for water in relation to protein hydration. In: Intermolecular forces: Springer; 1981. p. 331–42.

  20. Luo Y, Teng Z, Li Y, Wang Q. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohyd Polym. 2015;122:221–9.

    Article  CAS  Google Scholar 

  21. Nerella A, Basava Raju D, Devi A. Formulation, optimization and in vitro characterization of Letrozole loaded solid lipid nanoparticles. Int J Pharm Sci Drug Res. 2014;6:183–8.

    CAS  Google Scholar 

  22. Dey SK, Mandal B, Bhowmik M, Ghosh LK. Development and in vitro evaluation of Letrozole loaded biodegradable nanoparticles for breast cancer therapy. Braz J Pharm Sci. 2009;45(3):585–91.

    Article  CAS  Google Scholar 

  23. Balcerzak J, Mucha M. Analysis of model drug release kinetics from complex matrices of polylactide-chitosan. Prog Chem Appl Chitin Deriv. 2010;15:117–25.

    Google Scholar 

  24. Lokhandwala H, Deshpande A, Deshpande S. Kinetic modeling and dissolution profiles comparison: an overview. Int J Pharm Bio Sci. 2013;4(1):728–38.

    CAS  Google Scholar 

  25. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotech Biol Med. 2013;9(4):474–91.

    Article  CAS  Google Scholar 

  26. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotech Biol Med. 2006;2(1):8–21.

    Article  CAS  Google Scholar 

  27. Silva A, Amaral M, González-Mira E, Santos D, Ferreira D. Solid lipid nanoparticles (SLN)-based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies. Colloid Surface B. 2012;93:241–8.

    Article  CAS  Google Scholar 

  28. Macedo LF, Guo Z, Tilghman SL, Sabnis GJ, Qiu Y, Brodie A. Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res. 2006;66(15):7775–82.

    Article  CAS  Google Scholar 

  29. Westerink R, Ewing A. The PC12 cell as model for neurosecretion. Acta Physiol. 2008;192(2):273–85.

    Article  CAS  Google Scholar 

  30. Motiei M, Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur J Pharm Sci. 2017;99:285–91.

    Article  CAS  Google Scholar 

  31. Derakhshandeh K, Fathi S. Role of chitosan nanoparticles in the oral absorption of gemcitabine. Int J Pharm. 2012;437(1):172–7.

    Article  CAS  Google Scholar 

  32. Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Tox Met. 2012;65(1):13–7.

    Article  CAS  Google Scholar 

  33. Westesen K, Bunjes H, Koch M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997;48(2):223–36.

    Article  CAS  Google Scholar 

  34. Panahi HA, Soltani ER, Moniri E, Tamadon A. Synthesis and characterization of poly [1-(N, N-bis-carboxymethyl) amino-3-allylglycerol-co-dimethylacrylamide] grafted to magnetic nano-particles for extraction and determination of letrozole in biological and pharmaceutical samples. Talanta. 2013;117:511–7.

    Article  Google Scholar 

  35. Jana SK, Chakravarty B, Chaudhury K. Letrozole and curcumin loaded-PLGA nanoparticles: a therapeutic strategy for endometriosis. J Nanomed Biotherapeutic Discov. 2014;2014.

  36. Haynes BP, Dowsett M, Miller WR, Dixon JM, Bhatnagar AS. The pharmacology of letrozole. J Steroid Biochem Mol Biol. 2003;87(1):35–45.

    Article  CAS  Google Scholar 

  37. Dowsett M, Jones A, Johnston S, Jacobs S, Trunet P, Smith IE. In vivo measurement of aromatase inhibition by letrozole (CGS 20267) in postmenopausal patients with breast cancer. Clin Cancer Res. 1995;1(12):1511–5.

    CAS  PubMed  Google Scholar 

  38. O’Neill M, Paulin FE, Vendrell J, Ali CW, Thompson AM. The aromatase inhibitor letrozole enhances the effect of doxorubicin and docetaxel in an MCF7 cell line model. BioDiscovery. 2012;(6).

  39. Xing L, Esau C, Trudeau VL. Direct regulation of aromatase B expression by 17β-estradiol and dopamine D1 receptor agonist in adult radial glial cells. Front Neurosci. 2015;9:1–11.

    Article  Google Scholar 

  40. Xia Y, Nguyen TD, Yang M, Lee B, Santos A, Podsiadlo P, et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat Nanotechnol. 2011;6(9):580–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Kashanian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azandaryani, A.H., Kashanian, S., Shahlaei, M. et al. A Comprehensive Physicochemical, In Vitro and Molecular Characterization of Letrozole Incorporated Chitosan-Lipid Nanocomplex. Pharm Res 36, 62 (2019). https://doi.org/10.1007/s11095-019-2597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2597-4

Key Words

Navigation