Advertisement

Pharmaceutical Research

, 36:61 | Cite as

A Multifunctional Hydrogel Delivers Gold Compound and Inhibits Human Lung Cancer Xenograft

  • Puiyan Lee
  • Chun-Nam Lok
  • Chi-Ming CheEmail author
  • Weiyuan John KaoEmail author
Research Paper

Abstract

Purpose

Interpenetrating network system (IPN), consisting of polyethylene glycol (PEG) –diacrylate (PEGdA) and modified gelatin, is a biocompatible and biodegradable hydrogel and has been studied for the local delivery of bioactive molecules and drugs. Gold(III) porphyrin(AuP) is a stable metal compound in the development for anticancer application when administered systemically. The aim of this work is to develop a novel formulation for AuP based on IPN for local delivery.

Methods

IPN loaded with AuP hydrogel was optimized and synthesized. Drug release kinetics, cytotoxicity against tumor cells, and antitumor activity in lung cancer bearing nude mice were studied.

Results

AuP released from the IPN followed a first order kinetics in vitro. The AuP loaded IPN showed higher cytotoxicity against human lung cancer cell lines compared to IPN only. In mice bearing human lung cancer xenograft, AuP loaded IPN inhibited tumor growth and reduced angiogenesis. No sign of systemic toxicity was observed for all treatment groups.

Conclusion

AuP loaded IPN provides an improved formulation over systemic delivery for tumor inhibition to complement surgical intervention.

Graphical Abstract

Injectable multifunctional matrix of polyethylene glycol and gelatin derivatives for the delivery of gold porphyrinto inhibit tumor growth.

Key words

cancer gel-PEG-Cys gold porphyrin in situ interpenetrating network system (IPN) 

Notes

References

  1. 1.
    Vintiloiu A, Leroux JC. Organogels and their use in drug delivery - a review. J Control Release. 2008;125(3):179–92.CrossRefGoogle Scholar
  2. 2.
    [Internet] World Health Organization (Feb 2018). Fact sheets. Retrieved from http://www.who.int/mediacentre/factsheets/fs297/en/
  3. 3.
    Siegel RL, Jemal A, Wender RC, Gansler T, Ma J, Brawley OW. An assessment of progress in cancer control. CA Cancer J Clin. 2018;68(5):329–39.CrossRefGoogle Scholar
  4. 4.
    Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300.CrossRefGoogle Scholar
  5. 5.
    [Internet] American Cancer Society (May 2018). https://www.cancer.org/cancer/non small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html.
  6. 6.
    Yegya-Raman N, Zou W, Nie K, Malhotra J, Jabbour SK. Advanced radiation techniques for locally advanced non-small cell lung cancer: intensity-modulated radiation therapy and proton therapy. J Thorac Dis 2018;10(Suppl 21):S2474-S91, S2491.Google Scholar
  7. 7.
    Sasaki H, Suzuki A, Tatematsu T, Shitara M, Hikosaka Y, Okuda K, et al. Prognosis of recurrent non-small cell lung cancer following complete resection. Oncol Lett. 2014;7(4):1300–4.CrossRefGoogle Scholar
  8. 8.
    Wu W, Chen H, Shan F, Zhou J, Sun X, Zhang L, et al. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. Mol Pharm. 2014;11(10):3378–85.Google Scholar
  9. 9.
    Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016;21(11):1835–49.CrossRefGoogle Scholar
  10. 10.
    Bruijnincx PC, Sadler PJ. New trends for metal complexes with anticancer activity. Curr Opin Chem Biol. 2008;12(2):197–206.CrossRefGoogle Scholar
  11. 11.
    Basu U, Banik B, Wen R, Pathak RK, Dhar S. The Platin-X series: activation, targeting, and delivery. Dalton Trans. 2016;45(33):12992–3004.CrossRefGoogle Scholar
  12. 12.
    Li XJ, Liu YH, Tian HQ. Current developments in Pt(IV) prodrugs conjugated with bioactive ligands. Bioinorg Chem Appl. 2018;2018:1–18.CrossRefGoogle Scholar
  13. 13.
    Nardon C, Pettenuzzo N, Fregona D. Gold complexes for therapeutic purposes: an updated patent review (2010-2015). Curr Med Chem. 2016;23(29):3374–403.CrossRefGoogle Scholar
  14. 14.
    Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L. Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coordin Chem Rev. 2009;253(11–12):1692–707.CrossRefGoogle Scholar
  15. 15.
    Che CM, Sun RW, Yu WY, Ko CB, Zhu N, Sun H. Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem Commun (Camb). 2003;(14):1718–9.Google Scholar
  16. 16.
    Sun RWYCCM. The anti-cancer properties of gold(III) compounds with dianionic porphyrin and tetradentate ligands. Coord Chem Rev. 2009;253:1682–91.CrossRefGoogle Scholar
  17. 17.
    Chung CY, Fung SK, Tong KC, Wan PK, Lok CN, Huang Y, et al. A multi-functional PEGylated gold(iii) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem Sci. 2017;8(3):1942–53.CrossRefGoogle Scholar
  18. 18.
    Lum CT, Liu X, Sun RW, Li XP, Peng Y, He ML, et al. Gold(III) porphyrin 1a inhibited nasopharyngeal carcinoma metastasis in vivo and inhibited cell migration and invasion in vitro. Cancer Lett. 2010;294(2):159–66.CrossRefGoogle Scholar
  19. 19.
    To YF, Sun RW, Chen Y, Chan VS, Yu WY, Tam PK, et al. Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo. Int J Cancer. 2009;124(8):1971–9.CrossRefGoogle Scholar
  20. 20.
    Lum CT, Yang ZF, Li HY, Wai-Yin Sun R, Fan ST, Poon RT, et al. Gold(III) compound is a novel chemocytotoxic agent for hepatocellular carcinoma. Int J Cancer. 2006;118(6):1527–38.CrossRefGoogle Scholar
  21. 21.
    Tu S, Wai-Yin Sun R, Lin MC, Tao Cui J, Zou B, Gu Q, et al. Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer. Cancer. 2009;115(19):4459–69.CrossRefGoogle Scholar
  22. 22.
    Lum CT, Sun RWY, Zou TT, Che CM. Gold(III) complexes inhibit growth of cisplatin-resistant ovarian cancer in association with upregulation of proapoptotic PMS2 gene. Chem Sci. 2014;5(4):1579–84.CrossRefGoogle Scholar
  23. 23.
    Zou TT, Lum CT, Lok CN, Zhang JJ, Che CM. Chemical biology of anticancer gold((III)) and gold((I)) complexes. Chem Soc Rev. 2015;44(24):8786–801.CrossRefGoogle Scholar
  24. 24.
    Wang Y, He QY, Sun RWY, Che CM, Chiu JF. Gold(III) porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res. 2005;65(24):11553–64.CrossRefGoogle Scholar
  25. 25.
    Hu D, Liu Y, Lai YT, Tong KC, Fung YM, Lok CN, et al. Anticancer gold(III) porphyrins target mitochondrial chaperone Hsp60. Angew Chem Int Ed Engl. 2016;55(4):1387–91.Google Scholar
  26. 26.
    Lum CT, Huo L, Sun RW, Li M, Kung HF, Che CM, et al. Gold(III) porphyrin 1a prolongs the survival of melanoma-bearing mice and inhibits angiogenesis. Acta Oncol. 2011;50(5):719–26.CrossRefGoogle Scholar
  27. 27.
    Kim JH, Kim MS, Lee BH, Kim JK, Ahn EK, Ko HJ, et al. Marmesin-mediated suppression of VEGF/VEGFR and integrin beta1 expression: its implication in non-small cell lung cancer cell responses and tumor angiogenesis. Oncol Rep. 2017;37(1):91–7.Google Scholar
  28. 28.
    Pu D, Liu J, Li Z, Zhu J, Hou M. Fibroblast growth factor receptor 1 (FGFR1), partly related to vascular endothelial growth factor receptor 2 (VEGFR2) and microvessel density, is an independent prognostic factor for non-small cell lung Cancer. Med Sci Monit. 2017;23:247–57.CrossRefGoogle Scholar
  29. 29.
    Gu Y, Korbel C, Scheuer C, Nenicu A, Menger MD, Laschke MW. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model. Oncotarget. 2016;7(5):5258–72.CrossRefGoogle Scholar
  30. 30.
    Thambi T, Li Y, Lee DS. Injectable hydrogels for sustained release of therapeutic agents. J Control Release. 2017;267:57–66.CrossRefGoogle Scholar
  31. 31.
    Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res-Dord. 2009;26(3):631–43.CrossRefGoogle Scholar
  32. 32.
    Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as biomaterial for tissue engineering. Curr Pharm Des. 2017;23(24):3567–84.CrossRefGoogle Scholar
  33. 33.
    Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels. Acta Biomater. 2017;51:184–96.CrossRefGoogle Scholar
  34. 34.
    Guerra AD, Yeung OWH, Qi X, Kao WJ, Man K. The anti-tumor effects of M1 macrophage-loaded poly (ethylene glycol) and gelatin-based hydrogels on hepatocellular carcinoma. Theranostics. 2017;7(15):3732–44.CrossRefGoogle Scholar
  35. 35.
    Xu K, Fu Y, Chung W, Zheng X, Cui Y, Hsu IC, et al. Thiol-ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture. Acta Biomater. 2012;8(7):2504–16.Google Scholar
  36. 36.
    Kleinbeck KR, Bader RA, Kao WJ. Concurrent in vitro release of silver sulfadiazine and bupivacaine from semi-interpenetrating networks for wound management. J Burn Care Res. 2009;30(1):98–104.CrossRefGoogle Scholar
  37. 37.
    Waldeck H, Kao WJ. Effect of the addition of a labile gelatin component on the degradation and solute release kinetics of a stable PEG hydrogel. J Biomat Sci-Polym E. 2012;23(12):1595–611.Google Scholar
  38. 38.
    Wang CH, Liu CJ, Wang CL, Hua TE, Obliosca JM, Le KH, et al. Optimizing the size and surface properties of polyethylene glycol (PEG)-gold nanoparticles by intense x-ray irradiation. J Phys D Appl Phys. 2008;41(19):195301.CrossRefGoogle Scholar
  39. 39.
    Fu Y, Xu K, Zheng X, Giacomin AJ, Mix AW, Kao WJ. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 2012;33(1):48–58.CrossRefGoogle Scholar
  40. 40.
    Yan JJ, Sun RW, Wu P, Lin MC, Chan AS, Che CM. Encapsulation of dual cytotoxic and anti-angiogenic gold(III) complexes by gelatin-acacia microcapsules: in vitro and in vivo studies. Dalton Trans. 2010;39(33):7700–5.CrossRefGoogle Scholar
  41. 41.
    Lee P, Zhu Y, Yan JJ, Sun RW, Hao W, Liu X, et al. The cytotoxic effects of lipidic formulated gold porphyrin nanoparticles for the treatment of neuroblastoma. Nanotechnol Sci Appl. 2010;3:23–8.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee P, Zhang R, Li V, Liu X, Sun RW, Che CM, et al. Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int J Nanomedicine. 2012;7:731–7.Google Scholar
  43. 43.
    He L, Chen T, You Y, Hu H, Zheng W, Kwong WL, et al. A cancer-targeted nanosystem for delivery of gold(III) complexes: enhanced selectivity and apoptosis-inducing efficacy of a gold(III) porphyrin complex. Angew Chem Int Ed Engl. 2014;53(46):12532–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology CentreThe University of Hong KongPokfulamHong Kong
  2. 2.Department of Biomedical EngineeringThe University of Hong KongPokfulamHong Kong
  3. 3.Li Ka Shing Faculty of MedicinePokfulamHong Kong

Personalised recommendations