Advertisement

Pharmaceutical Research

, 36:34 | Cite as

Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease

  • Tuyen OngEmail author
  • Mark E. Pennesi
  • David G. Birch
  • Byron L. Lam
  • Stephen H. Tsang
Expert Review
  • 159 Downloads
Part of the following topical collections:
  1. Ophthalmic Drug Discovery and Development

Abstract

Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.

Keywords

AAV2-REP1 choroideremia gene therapy retina 

Abbreviations

AAV

Adeno-associated virus

adRP

Autosomal dominant retinitis pigmentosa

arRP

Autosomal recessive retinitis pigmentosa

BCVA

Best-corrected visual acuity

BSS

Balanced salt solution

CAG

CMV enhancer-CBA promoter-rabbit β-globin splice acceptor site

CBA

Chicken β-actin

CRISPR

Clustered Regularly Interspersed Short Palindromic Repeats

DNA

Deoxyribonucleic acid

ER

Endoplasmic reticulum

ETDRS

Early Treatment Diabetic Retinopathy Study

GA

Golgi apparatus

GG

Geranylgeranyl

GGTase

Geranylgeranyltransferase

hCHM

Wild-type human CHM cDNA

IRDs

Inherited retinal diseases

MOI

Multiplicity of infection

OCT

Optical coherence tomography

ORF15

Open reading frame 15

R

Ribosome

Rab

Ras-associated binding

REP1

Rab escort protein 1

REP2

Rab escort protein 2

RP

Retinitis pigmentosa

RPE

Retinal pigment epithelium

RPE65

Retinal pigment epithelial 65-kDa protein

RPGR

Retinitis pigmentosa guanosine triphosphate hydrolase regulator

RPGRIP

RPGR-interacting protein

SE

Standard error

VA

Visual acuity

WPRE

Woodchuck hepatitis virus posttranscriptional regulatory element

WT

Wild-type

XLRP

X-linked retinitis pigmentosa

Notes

Acknowledgments and Disclosures

Figure 1 images courtesy of DGB. Editorial support was provided by Rebecca Franklin of Fishawack Communications Ltd. and funded by Nightstar Therapeutics. Tuyen Ong is an employee and equity holder of Nightstar Therapeutics. Mark E. Pennesi is a consultant for AGTC, Astellas, Biogen, Editas, FFB, Gensight, Horama, Ionis, Nacuity, Nightstar Therapeutics, Ophthotech, ProQR Therapeutics, RegenexBio, Sanofi, and Spark Therapeutics, and has received clinical trial support from AGTC and Nightstar Therapeutics. His institution has received support through grant P30 EY010572 from the National Institutes of Health (Bethesda, MD), and by unrestricted departmental funding from Research to Prevent Blindness (New York, NY). David G. Birch is a consultant for Acucela, AGTC, Editas, Genentech, Ionis, Nacuity, and Nightstar Therapeutics, and has received clinical trial support from AGTC, Nightstar, Ionis, and 4D Therapeutics, and grant support through EY09076 from the National Institutes of Health (Bethesda, MD, USA) and from the Foundation Fighting Blindness. Byron L. Lam declares he has no conflict of interest. Stephen H. Tsang declares he has no conflict of interest.

References

  1. 1.
    McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161(4):241–54.CrossRefGoogle Scholar
  2. 2.
    Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng. 2017;14(5):051002.CrossRefGoogle Scholar
  3. 3.
    Campa C, Gallenga CE, Bolletta E, Perri P. The role of gene therapy in the treatment of retinal diseases: a review. Curr Gene Ther. 2017;17(3):194–213.CrossRefGoogle Scholar
  4. 4.
    Khan NW, Falsini B, Kondo M, Robson AG. Inherited retinal degeneration: genetics, disease characterization, and outcome measures. J Ophthalmol. 2017;2017:2109014.CrossRefGoogle Scholar
  5. 5.
    Oner A. Recent advancements in gene therapy for hereditary retinal dystrophies. Turk J Ophthalmol. 2017;47(6):338–43.CrossRefGoogle Scholar
  6. 6.
    Samiy N. Gene therapy for retinal diseases. J Ophthalmic Vis Res. 2014;9(4):506–9.CrossRefGoogle Scholar
  7. 7.
    Patricio MI, Barnard AR, Orlans HO, McClements ME, MacLaren RE. Inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element enhances AAV2-driven transduction of mouse and human retina. Mol Ther Nucleic Acids. 2017;6:198–208.CrossRefGoogle Scholar
  8. 8.
    US Food and Drug Administration. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. 2017. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm589467.htm. Accessed 18 May 2018.
  9. 9.
    Spark Therapeutics Inc. LUXTURNA™ US Prescribing Information. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM589541.pdf. Accessed 20 April 2018.
  10. 10.
    Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–72.CrossRefGoogle Scholar
  11. 11.
    Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.CrossRefGoogle Scholar
  12. 12.
    Fu X, Huu VAN, Duan Y, Kermany DS, Valentim CCS, Zhang R, et al. Clinical applications of retinal gene therapies. Precision Clinical Medicine. 2018;1(1):5–20.CrossRefGoogle Scholar
  13. 13.
    Sengillo JD, Justus S, Cabral T, Tsang SH. Correction of monogenic and common retinal disorders with gene therapy. Genes (Basel). 2017;8(2).  https://doi.org/10.3390/genes8020053.
  14. 14.
    Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75–80.CrossRefGoogle Scholar
  15. 15.
    Vandenberghe LH, Bell P, Maguire AM, Xiao R, Hopkins TB, Grant R, et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One. 2013;8(1):e53463.CrossRefGoogle Scholar
  16. 16.
    Auricchio A, Smith AJ, Ali RR. The future looks brighter after 25 years of retinal gene therapy. Hum Gene Ther. 2017;28(11):982–7.CrossRefGoogle Scholar
  17. 17.
    Bartholomae CC, Arens A, Balaggan KS, Yanez-Munoz RJ, Montini E, Howe SJ, et al. Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol Ther. 2011;19(4):703–10.CrossRefGoogle Scholar
  18. 18.
    Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther. 2008;15(19):1311–20.CrossRefGoogle Scholar
  19. 19.
    Binley K, Widdowson P, Loader J, Kelleher M, Iqball S, Ferrige G, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci. 2013;54(6):4061–71.CrossRefGoogle Scholar
  20. 20.
    Hashimoto T, Gibbs D, Lillo C, Azarian SM, Legacki E, Zhang XM, et al. Lentiviral gene replacement therapy of retinas in a mouse model for usher syndrome type 1B. Gene Ther. 2007;14(7):584–94.CrossRefGoogle Scholar
  21. 21.
    Zallocchi M, Binley K, Lad Y, Ellis S, Widdowson P, Iqball S, et al. EIAV-based retinal gene therapy in the shaker1 mouse model for Usher syndrome type 1B: development of UshStat. PLoS One. 2014;9(4):e94272.CrossRefGoogle Scholar
  22. 22.
    Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther. 2015;26(4):193–200.CrossRefGoogle Scholar
  23. 23.
    Trapani I, Colella P, Sommella A, Iodice C, Cesi G, de Simone S, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 2014;6(2):194–211.PubMedGoogle Scholar
  24. 24.
    McClements ME, Barnard AR, Singh MS, Charbel Issa P, Jiang Z, Radu RA, et al. An AAV dual vector strategy ameliorates the Stargardt phenotype in adult Abca4−/− mice. Hum Gene Ther. 2018.  https://doi.org/10.1089/hum.2018.156 [Epub ahead of print].
  25. 25.
    Dimopoulos IS, Hoang SC, Radziwon A, Binczyk NM, Seabra MC, MacLaren RE, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am J Ophthalmol. 2018;193:130–42.CrossRefGoogle Scholar
  26. 26.
    MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.CrossRefGoogle Scholar
  27. 27.
    Clinical Trials. Gene therapy for X-linked retinitis pigmentosa (XLRP) retinitis pigmentosa GTPase regulator (RPGR). Available from: https://clinicaltrials.gov/ct2/show/NCT03252847?term=NCT03252847&rank=1. Accessed 7 September 2018.
  28. 28.
    Clinical Trials. Safety and efficacy of rAAV2tYF-GRK1-RPGR in subjects with X-linked retinitis pigmentosa caused by RPGR-ORF15 mutations. Available from: https://clinicaltrials.gov/ct2/show/NCT03316560?term=NCT03316560&rank=1. Accessed 6 September 2018.
  29. 29.
    Clinical Trials. A clinical trial of retinal gene therapy for X-linked retinitis pigmentosa (XIRIUS). Available from: https://clinicaltrials.gov/ct2/show/NCT03116113?term=XIRIUS&rank=1. Accessed 13 September 2018.
  30. 30.
    Clinical Trials. Safety and efficacy study in patients with retinitis pigmentosa due to mutations in PDE6B gene. Available from: https://clinicaltrials.gov/ct2/show/NCT03328130. Accessed 21 September 2018.
  31. 31.
    Clinical Trials. Efficacy study of GS010 for the treatment of vision loss up to 6 months from onset in LHON due to the ND4 mutation (RESCUE). Available from: https://clinicaltrials.gov/ct2/show/NCT02652767?term=NCT02652767&rank=1. Accessed 13 September 2018.
  32. 32.
    Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of Endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.CrossRefGoogle Scholar
  33. 33.
    Clinical Trials. A follow-up study to evaluate the safety of RetinoStat® in patients with age-related macular degeneration. Available from: https://clinicaltrials.gov/ct2/show/NCT01678872. Accessed 21 November 2018.
  34. 34.
    Clinical Trials. A study to determine the long-term safety, tolerability and biological activity of UshStat® in patients with Usher syndrome type 1B. Available from: https://clinicaltrials.gov/ct2/show/NCT02065011. Accessed 21 November 2018.
  35. 35.
    Clinical Trials. Study of UshStat in patients with retinitis pigmentosa associated with Usher syndrome type 1B. Available from: https://clinicaltrials.gov/ct2/show/NCT01505062. Accessed 21 November 2018.
  36. 36.
    Stone EM, Aldave AJ, Drack AV, Maccumber MW, Sheffield VC, Traboulsi E, et al. Recommendations for genetic testing of inherited eye diseases: report of the American Academy of ophthalmology task force on genetic testing. Ophthalmology. 2012;119(11):2408–10.CrossRefGoogle Scholar
  37. 37.
    Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86.CrossRefGoogle Scholar
  38. 38.
    Megaw RD, Soares DC, Wright AF. RPGR: its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32–41.CrossRefGoogle Scholar
  39. 39.
    De Silva SR, Barnard AR, Hughes S, Tam SKE, Martin C, Singh MS, et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy. Proc Natl Acad Sci U S A. 2017;114(42):11211–6.CrossRefGoogle Scholar
  40. 40.
    Daiger SP, Rossiter BJF, Greenberg J, Christoffels A, Hide W. Data services and software for identifying genes and mutations causing retinal degeneration. Invest Ophthalmol Vis Sci. 1998;39:S295.Google Scholar
  41. 41.
    Khanna H, Hurd TW, Lillo C, Shu X, Parapuram SK, He S, et al. RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem. 2005;280(39):33580–7.CrossRefGoogle Scholar
  42. 42.
    Martinez-Fernandez De la Camara C, Nanda A, Salvetti AP, Fischer MD, MacLaren RE. Gene therapy for the treatment of X-linked retinitis pigmentosa. Expert Opin Orphan Drugs. 2018;6(3):167–77.CrossRefGoogle Scholar
  43. 43.
    Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics. 2011;12(4):238–49.CrossRefGoogle Scholar
  44. 44.
    Daiger SP, Bowne SJ, Sullivan LS. Genes and mutations causing autosomal dominant retinitis pigmentosa. Cold Spring Harb Perspect Med. 2014;5(10):a017129.CrossRefGoogle Scholar
  45. 45.
    Millington-Ward S, Chadderton N, O'Reilly M, Palfi A, Goldmann T, Kilty C, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19(4):642–9.CrossRefGoogle Scholar
  46. 46.
    Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S, Swider M, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci U S A. 2018;115(36):E8547–E56.CrossRefGoogle Scholar
  47. 47.
    Deng WT, Dyka FM, Dinculescu A, Li J, Zhu P, Chiodo VA, et al. Stability and safety of an AAV vector for treating RPGR-ORF15 X-linked retinitis pigmentosa. Hum Gene Ther. 2015;26(9):593–602.CrossRefGoogle Scholar
  48. 48.
    Hong DH, Pawlyk BS, Adamian M, Li T. Dominant, gain-of-function mutant produced by truncation of RPGR. Invest Ophthalmol Vis Sci. 2004;45(1):36–41.CrossRefGoogle Scholar
  49. 49.
    Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A, et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A. 2012;109(6):2132–7.CrossRefGoogle Scholar
  50. 50.
    Fischer MD, McClements ME, Martinez-Fernandez De la Camara C, Bellingrath JS, Dauletbekov D, Ramsden SC, et al. Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis pigmentosa. Mol Ther. 2017;25(8):1854–65.CrossRefGoogle Scholar
  51. 51.
    Sun X, Park JH, Gumerson J, Wu Z, Swaroop A, Qian H, et al. Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. Proc Natl Acad Sci U S A. 2016;113(21):E2925–34.CrossRefGoogle Scholar
  52. 52.
    Clinical Trials. Clinical evaluation of patients with X-linked retinitis pigmentosa (XLRP). Available from: https://clinicaltrials.gov/ct2/show/NCT03314207. Accessed 24 September 2018.
  53. 53.
    Clinical Trials. Natural history study of patients with X-linked retinal dystrophy associated with mutations in retinitis pigmentosa GTPase regulator (RPGR). Available from: https://clinicaltrials.gov/ct2/show/NCT03349242. Accessed 24 September 2018.
  54. 54.
    Coussa RG, Traboulsi EI. Choroideremia: a review of general findings and pathogenesis. Ophthalmic Genet. 2012;33(2):57–65.CrossRefGoogle Scholar
  55. 55.
    Kalatzis V, Hamel CP, MacDonald IM. First international choroideremia research symposium. Choroideremia: towards a therapy. Am J Ophthalmol. 2013;156(3):433–7.CrossRefGoogle Scholar
  56. 56.
    US National Library of Medicine. Choroideremia. Available from: https://ghr.nlm.nih.gov/condition/choroideremia. Accessed 9 March 2018.
  57. 57.
    Jacobson SG, Cideciyan AV, Sumaroka A, Aleman TS, Schwartz SB, Windsor EA, et al. Remodeling of the human retina in choroideremia: Rab escort protein 1 (REP-1) mutations. Invest Ophthalmol Vis Sci. 2006;47(9):4113–20.CrossRefGoogle Scholar
  58. 58.
    Aleman TS, Han G, Serrano LW, Fuerst NM, Charlson ES, Pearson DJ, et al. Natural history of the central structural abnormalities in choroideremia: a prospective cross-sectional study. Ophthalmology. 2017;124(3):359–73.CrossRefGoogle Scholar
  59. 59.
    Jolly JK, Xue K, Edwards TL, Groppe M, MacLaren RE. Characterizing the natural history of visual function in choroideremia using microperimetry and multimodal retinal imaging. Invest Ophthalmol Vis Sci. 2017;58(12):5575–83.CrossRefGoogle Scholar
  60. 60.
    Seabra MC, Brown MS, Goldstein JL. Retinal degeneration in choroideremia: deficiency of Rab geranylgeranyl transferase. Science. 1993;259(5093):377–81.CrossRefGoogle Scholar
  61. 61.
    Corbeel L, Freson K. Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur J Pediatr. 2008;167(7):723–9.CrossRefGoogle Scholar
  62. 62.
    Zinkernagel MS, MacLaren RE. Recent advances and future prospects in choroideremia. Clin Ophthalmol. 2015;9:2195–200.CrossRefGoogle Scholar
  63. 63.
    Barnard AR, Groppe M, MacLaren RE. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector. Cold Spring Harb Perspect Med. 2015;5:a017293.CrossRefGoogle Scholar
  64. 64.
    Pereira-Leal JB, Hume AN, Seabra MC. Prenylation of Rab GTPases: molecular mechanisms and involvement in genetic disease. FEBS Lett. 2001;498(2–3):197–200.CrossRefGoogle Scholar
  65. 65.
    Seabra MC, Ho YK, Anant JS. Deficient geranylgeranylation of ram/Rab27 in choroideremia. J Biol Chem. 1995;270(41):24420–7.CrossRefGoogle Scholar
  66. 66.
    Patricio MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther. 2018;18(7):807–20.CrossRefGoogle Scholar
  67. 67.
    Krock BL, Bilotta J, Perkins BD. Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia. Proc Natl Acad Sci U S A. 2007;104(11):4600–5.CrossRefGoogle Scholar
  68. 68.
    Xue K, Oldani M, Jolly JK, Edwards TL, Groppe M, Downes SM, et al. Correlation of optical coherence tomography and autofluorescence in the outer retina and choroid of patients with choroideremia. Invest Ophthalmol Vis Sci. 2016;57(8):3674–84.CrossRefGoogle Scholar
  69. 69.
    Hariri AH, Velaga SB, Girach A, Ip MS, Le PV, Lam BL, et al. Measurement and reproducibility of preserved ellipsoid zone area and preserved retinal pigment epithelium area in eyes with choroideremia. Am J Ophthalmol. 2017;179:110–7.CrossRefGoogle Scholar
  70. 70.
    Morgan JI, Han G, Klinman E, Maguire WM, Chung DC, Maguire AM, et al. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci. 2014;55(10):6381–97.CrossRefGoogle Scholar
  71. 71.
    Edwards TL, Jolly JK, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, et al. Visual acuity after retinal gene therapy for choroideremia. N Engl J Med. 2016;374(20):1996–8.CrossRefGoogle Scholar
  72. 72.
    Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3(88):88ra54.CrossRefGoogle Scholar
  73. 73.
    Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606–20.CrossRefGoogle Scholar
  74. 74.
    Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.CrossRefGoogle Scholar
  75. 75.
    Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber's congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.CrossRefGoogle Scholar
  76. 76.
    Tolmachova T, Tolmachov OE, Barnard AR, de Silva SR, Lipinski DM, Walker NJ, et al. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med (Berl). 2013;91(7):825–37.CrossRefGoogle Scholar
  77. 77.
    Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, et al. Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs. Hum Gene Ther Methods. 2017.  https://doi.org/10.1089/hum.2017.079 [Epub ahead of print].
  78. 78.
    Higashimoto T, Urbinati F, Perumbeti A, Jiang G, Zarzuela A, Chang LJ, et al. The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther. 2007;14(17):1298–304.CrossRefGoogle Scholar
  79. 79.
    LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.CrossRefGoogle Scholar
  80. 80.
    Ochakovski GA, Bartz-Schmidt KU, Fischer MD. Retinal gene therapy: surgical vector delivery in the translation to clinical trials. Front Neurosci. 2017;11:174.CrossRefGoogle Scholar
  81. 81.
    Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58(4):217–26.CrossRefGoogle Scholar
  82. 82.
    Xue K, Groppe M, Salvetti AP, MacLaren RE. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye (Lond). 2017;31(9):1308–16.CrossRefGoogle Scholar
  83. 83.
    Vasireddy V, Mills JA, Gaddameedi R, Basner-Tschakarjan E, Kohnke M, Black AD, et al. AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models. PLoS One. 2013;8(5):e61396.CrossRefGoogle Scholar
  84. 84.
    Anand V, Barral DC, Zeng Y, Brunsmann F, Maguire AM, Seabra MC, et al. Gene therapy for choroideremia: in vitro rescue mediated by recombinant adenovirus. Vis Res. 2003;43(8):919–26.CrossRefGoogle Scholar
  85. 85.
    Patricio MI, Barnard AR, Cox CI, Blue C, MacLaren RE. The biological activity of AAV vectors for choroideremia gene therapy can be measured by in vitro prenylation of RAB6A. Mol Ther Methods Clin Dev. 2018;9:288–95.CrossRefGoogle Scholar
  86. 86.
    Gregori NZ, Lam BL, Davis JL. Intraoperative use of microscope-integrated optical coherence tomography for subretinal gene therapy delivery. Retina. 2017:1.  https://doi.org/10.1097/IAE.0000000000001646. [Epub ahead of print].
  87. 87.
    Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.CrossRefGoogle Scholar
  88. 88.
    Lam BL, Davis JL, Gregori NZ, MacLaren RE, Girach A, Verriotto JD, et al. Choroideremia gene therapy phase 2 clinical trial: 24-month results. Am J Ophthalmol. 2018;197:65–73.  https://doi.org/10.1016/j.ajo.2018.09.012. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  89. 89.
    Clinical Trials. REP1 gene replacement therapy for choroideremia (REGENERATE). Available from: https://clinicaltrials.gov/ct2/show/NCT02407678?cond=Choroideremia&rank=9. Accessed 17 May 2018.
  90. 90.
    Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.CrossRefGoogle Scholar
  91. 91.
    Clinical Trials. A safety study of retinal gene therapy for choroideremia (GEMINI). Available from: https://clinicaltrials.gov/ct2/show/NCT03507686?cond=Choroideremia&rank=3. Accessed 17 May 2018.
  92. 92.
    Turner DL, Cepko CL. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987;328(6126):131–6.CrossRefGoogle Scholar
  93. 93.
    Clinical Trials. Efficacy and safety of AAV2-REP1 for the treatment of choroideremia (STAR). Available from: https://clinicaltrials.gov/ct2/show/NCT03496012?cond=Choroideremia&rank=4. Accessed 16 May 2018.
  94. 94.
    Ramachandran PS, Lee V, Wei Z, Song JY, Casal G, Cronin T, et al. Evaluation of dose and safety of AAV7m8 and AAV8BP2 in the non-human primate retina. Hum Gene Ther. 2017;28(2):154–67.CrossRefGoogle Scholar
  95. 95.
    Duebel J, Marazova K, Sahel JA. Optogenetics. Curr Opin Ophthalmol. 2015;26(3):226–32.CrossRefGoogle Scholar
  96. 96.
    Yang T, Justus S, Li Y, Tsang SH. BEST1: the BEST target for gene and cell therapies. Mol Ther. 2015;23(12):1805–9.CrossRefGoogle Scholar
  97. 97.
    DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest. 2018;128(6):2177–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nightstar TherapeuticsWalthamUSA
  2. 2.Casey Eye InstituteOregon Health & Science UniversityPortlandUSA
  3. 3.Retina Foundation of the SouthwestDallasUSA
  4. 4.Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiamiUSA
  5. 5.Department of Ophthalmology and of Pathology and Cell BiologyColumbia UniversityNew YorkUSA

Personalised recommendations