Pharmaceutical Research

, 36:14 | Cite as

Delivery of pDNA Polyplexes to Bronchial and Alveolar Epithelial Cells Using a Mesh Nebulizer

  • Larissa Gomes dos Reis
  • Maree Svolos
  • Lyn M Moir
  • Rima Jaber
  • Norbert Windhab
  • Paul M Young
  • Daniela Traini
Research Paper



In this study, a cell penetrating peptide was used as an uptake enhancer for pDNA delivery to the lungs.


Polyplexes were prepared between pDNA and CPP. Intracellular delivery of pDNA was assessed in both alveolar (A549) and bronchial (Calu-3) epithelial cells. Aerosol delivery was investigated using a mesh nebulizer.


Efficient intracellular delivery of pDNA occurs in both A549 and Calu-3 cells when delivered as polyplexes. Protection against nucleases and endosomal escape mechanism occurs when pDNA is formulated within the polyplexes. For aerosol delivery, 1% (w/v) mannitol was able to protect naked DNA structure during nebulization with a significant increase in fine particle fraction (particles <5 μm). The structure of polyplexes when delivered via a mesh nebulizer using 1% (w/v) mannitol could partially withstand the shear forces involved in aerosolization. Although some loss in functionality occurred after nebulization, membrane-associated fluorescence was observed in A549 cells. In Calu-3 cells mucus entrapment was a limiting factor for polyplex delivery.


The presence of CPP is essential for efficient intracellular delivery of pDNA. The polyplexes can be delivered to lung epithelial cells using mesh nebulizer. The use of different excipients is essential for further optimization of these delivery systems.

Key Words

aerosol cell-penetrating peptide gene delivery lung nebulization 



Cell-penetrating peptide


Dynamic light scattering


Double stranded DNA


Emitted dose


Enhanced green fluorescent protein


Electrophoretic Mobility Shift Assay


Fine particle fraction




Next Generation Impactor


Phosphate buffered saline


Polydispersity index


Plasmid DNA


Regions of Interest


Supercoiled DNA


Scanning electron microscopy


Transepithelial Electrical Resistance


Twin Stage Impinger


Acknowledgments and Disclosures

This work was supported by an Australian Research Council Linkage Grant LP140100181. Larissa Gomes dos Reis is financially supported by the Brazilian Research Funding CAPES.

Supplementary material

11095_2018_2542_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19.2 kb)
11095_2018_2542_MOESM2_ESM.docx (21 kb)
ESM 2 (DOCX 20.6 kb)


  1. 1.
    Gomes Dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Del. 2017;14(3):319–30.CrossRefGoogle Scholar
  2. 2.
    Rudolph C, Muller RH, Rosenecker J. Jet nebulization of PEI/DNA polyplexes: physical stability and in vitro gene delivery efficiency. J Gene Med. 2002;4(1):66–74.CrossRefGoogle Scholar
  3. 3.
    Singh B, Maharjan S, Park TE, Jiang T, Kang SK, Choi YJ, et al. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci. 2015;15(5):622–35.CrossRefGoogle Scholar
  4. 4.
    Avila LA, Aps LR, Sukthankar P, Ploscariu N, Gudlur S, Simo L, et al. Branched amphiphilic cationic oligopeptides form peptiplexes with DNA: a study of their biophysical properties and transfection efficiency. Mol Pharm. 2015;12(3):706–15.CrossRefGoogle Scholar
  5. 5.
    Davies LA, Nunez-Alonso GA, McLachlan G, Hyde SC, Gill DR. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. Hum Gene Ther Cl Dev. 2014;25(2):97–107.CrossRefGoogle Scholar
  6. 6.
    Allon N, Saxena A, Chambers C, Doctor BP. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Control Release. 2012;160(2):217–24.CrossRefGoogle Scholar
  7. 7.
    Mann A, Thakur G, Shukla V, Singh AK, Khanduri R, Naik R, et al. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Mol Pharm. 2011;8(5):1729–41.CrossRefGoogle Scholar
  8. 8.
    Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm. 2014;11(3):683–96.CrossRefGoogle Scholar
  9. 9.
    Liu BR, Lo SY, Liu CC, Chyan CL, Huang YW, Aronstam RS, et al. Endocytic trafficking of nanoparticles delivered by cell-penetrating peptides comprised of Nona-arginine and a penetration accelerating sequence. PLoS One. 2013;8(6):e67100.CrossRefGoogle Scholar
  10. 10.
    Oba M, Demizu Y, Yamashita H, Kurihara M, Tanaka M. Plasmid DNA delivery using fluorescein-labeled arginine-rich peptides. Bioorg Med Chem. 2015;23(15):4911–8.CrossRefGoogle Scholar
  11. 11.
    Lehto T, Kurrikoff K, Langel U. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Del. 2012;9(7):823–36.CrossRefGoogle Scholar
  12. 12.
    Silva ERC G, Hamley IW, Alves WA, Lee S, O'Connor BF, Reza M, et al. Structural behaviour and gene delivery in complexes formed between DNA and arginine-containing peptide amphiphiles. Soft Matter. 2016;12:9158–69.CrossRefGoogle Scholar
  13. 13.
    Ye J, Liu E, Yu Z, Pei X, Chen S, Zhang P, et al. CPP-assisted intracellular drug delivery, what is next? Int J Mol Sci. 2016;17(11):1892.CrossRefGoogle Scholar
  14. 14.
    Kuo JH. The effect of protective agents on the stability of plasmid DNA by the process of spray-drying. J Pharm Pharmacol. 2003;55(3):301–6.CrossRefGoogle Scholar
  15. 15.
    Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144(2):221–6.CrossRefGoogle Scholar
  16. 16.
    Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene delivery vehicle: N-ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem. 2000;11(5):637–45.CrossRefGoogle Scholar
  17. 17.
    Conti DS, Bharatwaj B, Brewer D, da Rocha SR. Propellant-based inhalers for the non-invasive delivery of genes via oral inhalation. J Control Release. 2012;157(3):406–17.CrossRefGoogle Scholar
  18. 18.
    Lengsfeld CS, Anchordoquy TJ. Shear-induced degradation of plasmid DNA. J Pharm Sci. 2002;91(7):1581–9.CrossRefGoogle Scholar
  19. 19.
    Arulmuthu ER, Williams DJ, Baldascini H, Versteeg HK, Hoare M. Studies on aerosol delivery of plasmid DNA using a mesh nebulizer. Biotechnol Bioeng. 2007;98(5):939–55.CrossRefGoogle Scholar
  20. 20.
    Ari A. Jet, ultrasonic, and mesh nebulizers: an evaluation of nebulizers for better clinical outcomes. Eurasian J Pulmonol. 2014;16(1):1–7.CrossRefGoogle Scholar
  21. 21.
    Birchall JC, Kellaway IW, Gumbleton M. Physical stability and in-vitro gene expression efficiency of nebulised lipid-peptide-DNA complexes. Int J Pharm. 2000;197(1–2):221–31.CrossRefGoogle Scholar
  22. 22.
    Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res. 1998;243(2):359–66.CrossRefGoogle Scholar
  23. 23.
    Fernandes CA, Vanbever R. Preclinical models for pulmonary drug delivery. Expert Opin Drug Del. 2009;6(11):1231–45.CrossRefGoogle Scholar
  24. 24.
    Haghi M, Young PM, Traini D, Jaiswal R, Gong J, Bebawy M. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm. 2010;36(10):1207–14.CrossRefGoogle Scholar
  25. 25.
    Levy MS, Lotfian P, O’Kennedy R, Lo-Yim MY, Ayazi SP. Quantitation of supercoiled circular content in plasmid DNA solutions using a fluorescence-based method. Nucleic Acids Res. 2000;28(12):e57.CrossRefGoogle Scholar
  26. 26.
    Johnson KA. Preparation of peptide and protein powders for inhalation. Adv Drug Deliv Rev. 1997;26(1):3–15.CrossRefGoogle Scholar
  27. 27.
    Haghi M, Traini D, Postma DS, Bebawy M, Young PM. Fluticasone uptake across Calu-3 cells is mediated by salmeterol when deposited as a combination powder inhaler. Respirology. 2013;18(8):1197–201.CrossRefGoogle Scholar
  28. 28.
    Mannisto M, Reinisalo M, Ruponen M, Honkakoski P, Tammi M, Urtti A. Polyplex-mediated gene transfer and cell cycle: effect of carrier on cellular uptake and intracellular kinetics, and significance of glycosaminoglycans. J Gene Med. 2007;9(6):479–87.CrossRefGoogle Scholar
  29. 29.
    Ritz S, Schottler S, Kotman N, Baier G, Musyanovych A, Kuharev J, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. 2015;16(4):1311–21.CrossRefGoogle Scholar
  30. 30.
    French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol. 2009;43(5):1354–9.CrossRefGoogle Scholar
  31. 31.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(1):159–69.CrossRefGoogle Scholar
  32. 32.
    Wallbrecher R, Verdurmen WP, Schmidt S, Bovee-Geurts PH, Broecker F, Reinhardt A, et al. The stoichiometry of peptide-heparan sulfate binding as a determinant of uptake efficiency of cell-penetrating peptides. Cell Mol Life Sci. 2014;71(14):2717–29.PubMedGoogle Scholar
  33. 33.
    Andries O, De Filette M, Rejman J, De Smedt SC, Demeester J, Van Poucke M, et al. Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol Pharm. 2012;9(8):2136–45.CrossRefGoogle Scholar
  34. 34.
    Dördelmann G, Kozlova D, Karczewski S, Lizio R, Knauer S, Epple M. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J Mater Chem B. 2014;2(41):7250–9.CrossRefGoogle Scholar
  35. 35.
    Tang J, Chen JY, Liu J, Luo M, Wang YJ, Wei XW, et al. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Int J Pharm. 2012;431(1–2):210–21.CrossRefGoogle Scholar
  36. 36.
    Lai TC, Bae Y, Yoshida T, Kataoka K, Kwon GS. pH-sensitive multi-PEGylated block copolymer as a bioresponsive pDNA delivery vector. Pharm Res. 2010;27(11):2260–73.CrossRefGoogle Scholar
  37. 37.
    Adolph EJ, Nelson CE, Werfel TA, Guo R, Davidson JM, Guelcher SA, et al. Enhanced performance of plasmid DNA Polyplexes stabilized by a combination of Core hydrophobicity and surface PEGylation. J Mater Chem B. 2014;2(46):8154–64.CrossRefGoogle Scholar
  38. 38.
    Jiang B, He H, Yao L, Zhang T, Huo J, Sun W, et al. Harmonizing the intracellular kinetics toward effective gene delivery using Cancer cell-targeted and light-degradable Polyplexes. Biomacromolecules. 2017;18(3):877–85.CrossRefGoogle Scholar
  39. 39.
    Catanese DJ Jr, Fogg JM, Schrock DE 2nd, Gilbert BE, Zechiedrich L. Supercoiled Minivector DNA resists shear forces associated with gene therapy delivery. Gene Ther. 2012;19(1):94–100.CrossRefGoogle Scholar
  40. 40.
    Smart J, Stangl R, Frtiz E. Touchspray Technology: A preliminary in vitro evaluation of plasmid DNA of different size arid topology. Proc Respiratory Drug Delivery VIII. 2002;I:529–531Google Scholar
  41. 41.
    Davies LA, Hannavy K, Davies N, Pirrie A, Coffee RA, Hyde SC, et al. Electrohydrodynamic comminution: a novel technique for the aerosolisation of plasmid DNA. Pharm Res. 2005;22(8):1294–304.CrossRefGoogle Scholar
  42. 42.
    Suchaoin W, Pereira de Sousa I, Netsomboon K, Lam HT, Laffleur F, Bernkop-Schnurch A. Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Int J Pharm. 2016;510(1):255–62.CrossRefGoogle Scholar
  43. 43.
    Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61(2):86–100.CrossRefGoogle Scholar
  44. 44.
    Haghi M, Traini D, Young P. In vitro cell integrated impactor deposition methodology for the study of aerodynamically relevant size fractions from commercial pressurised metered dose inhalers. Pharm Res. 2014;31(7):1779–87.CrossRefGoogle Scholar
  45. 45.
    Hirotani Y, Ikeda K, Kato R, Myotoku M, Umeda T, Ijiri Y, et al. Protective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide in human intestinal Caco-2 cells. J Pharm Soc Japan. 2008;128(9):1363–8.CrossRefGoogle Scholar
  46. 46.
    Mayeur S, Seidman EG, Garofalo C, Spahis S, Marcil V, Pouliot Y, et al. Sa2057 lactoferrin enhances intestinal barrier function by counteracting oxidative stress and inflammation while upregulating tight junction protein expression and lowering permeability in CaCO-2/15 cells. Gastroenterology. 2014;146(5):S-365–S-6.CrossRefGoogle Scholar
  47. 47.
    Uchida M, Li XW, Mertens P, Alpar HO. Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta. 2009;1790(8):754–64.CrossRefGoogle Scholar
  48. 48.
    Kuo JH, Hwang R. Preparation of DNA dry powder for non-viral gene delivery by spray-freeze drying: effect of protective agents (polyethyleneimine and sugars) on the stability of DNA. J Pharm Pharmacol. 2004;56(1):27–33.CrossRefGoogle Scholar
  49. 49.
    Mehta R, Kumari R, Das P, Bhowmick AK. Synthesis and characterization of a biocompatible monotyrosine-based polymer and its interaction with DNA. J Mater Chem B. 2014;2(37):6236–48.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Larissa Gomes dos Reis
    • 1
  • Maree Svolos
    • 1
  • Lyn M Moir
    • 1
  • Rima Jaber
    • 2
  • Norbert Windhab
    • 2
  • Paul M Young
    • 1
  • Daniela Traini
    • 1
  1. 1.Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical SchoolSydney UniversityCamperdownAustralia
  2. 2.Evonik Industries AGDarmstadtGermany

Personalised recommendations