Skip to main content

Advertisement

Log in

An Expandable Mechanopharmaceutical Device (2): Drug Induced Granulomas Maximize the Cargo Sequestering Capacity of Macrophages in the Liver

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Drug-induced liver injuries (DILI) comprise a significant proportion of adverse drug reactions leading to hospitalizations and death. One frequent DILI is granulomatous inflammation from exposure to harmful metabolites that activate inflammatory pathways of immune cells of the liver, which may act as a barrier to isolate the irritating stimulus and limit tissue damage.

Methods

Paralleling the accumulation of CFZ precipitates in the liver, granulomatous inflammation was studied to gain insight into its effect on liver structure and function. A structural analog that does not precipitate within macrophages was also studied using micro-analytical approaches. Depleting macrophages was used to inhibit granuloma formation and assess its effect on drug bioaccumulation and toxicity.

Results

Granuloma-associated macrophages showed a distinct phenotype, differentiating them from non-granuloma macrophages. Granulomas were induced by insoluble CFZ cargo, but not by the more soluble analog, pointing to precipitation being a factor driving granulomatous inflammation. Granuloma-associated macrophages showed increased activation of lysosomal master-regulator transcription factor EB (TFEB). Inhibiting granuloma formation increased hepatic necrosis and systemic toxicity in CFZ-treated animals.

Conclusions

Granuloma-associated macrophages are a specialized cell population equipped to actively sequester and stabilize cytotoxic chemotherapeutic agents. Thus, drug-induced granulomas may function as drug sequestering “organoids” –an induced, specialized sub-compartment– to limit tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADR:

Adverse Drug Reaction

CFZ:

Clofazimine

CLDI:

Crystal-Like Drug Inclusion

DILI:

Drug-induced liver injury

IL-1RA:

Interleukin-1 Receptor Antagonist

LAMP1:

Lysosomal Associated Membrane Protein 1

LC3:

Microtubule-associated protein 1A/1B-light chain 3

TFEB:

Transcription Factor EB

TLR9:

Toll-Like Receptor 9

TUNEL:

Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling

References

  1. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.

    Article  CAS  PubMed  Google Scholar 

  2. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediat Inflamm. 2010;2010:1–10.

    Article  Google Scholar 

  3. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12(10):584–96.

    Article  CAS  PubMed  Google Scholar 

  4. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coash M, Forouhar F, Wu CH, Wu GY. Granulomatous liver diseases: a review. J Formos Med Assoc. 2012;111(1):3–13.

    Article  PubMed  Google Scholar 

  6. Brito T, Franco MF. Granulomatous inflammation. Rev Inst Med Trop Sao Paulo. 1994;36:185–92.

    Article  PubMed  Google Scholar 

  7. Zumla A, James DG. Granulomatous infections: etiology and classification. Clin Infect Dis. 1996;23(1):146–58.

    Article  CAS  PubMed  Google Scholar 

  8. Bhat RM, Prakash C. Leprosy: An overview of pathophysiology. Int Perspect Infect Dis. 2012;2012:6.

    Google Scholar 

  9. Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous granuloma: an unsuccessful host Defence mechanism providing a safety shelter for the Bacteria? Clin Dev Immunol. 2012;2012:14.

    Article  Google Scholar 

  10. Freeman HJ. Granuloma-positive Crohn’s disease. Can J Gastroenterol. 2007;21(9):583–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Henry L, Wagner B, Faulkner MK, Slater DN, Ansell ID. Metal deposition in post-surgical granulomas of the urinary tract. Histopathology. 1993;22(5):457–65.

    Article  CAS  PubMed  Google Scholar 

  12. Culver EL, Watkins J, Westbrook RH. Granulomas of the liver. Clin Liver Dis. 2016;7(4):92–6.

    Article  Google Scholar 

  13. Espiritu CR, Kim TS, Levine RA. Granulomatous hepatitis associated with sulfadimethoxine hypersensitivity. JAMA. 1967;202(10):985–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bramlet DA, Posalaky Z, Olson R. Granulomatous hepatitis as a manifestation of quinidine hypersensitivity. Arch Intern Med. 1980;140(3):395–7.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. J Enzymol Metab. 2015;1(1).

  16. Milosevic N, Schawalder H, Maier P. Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes. Eur J Pharmacol. 1999;368(1):75–87.

    Article  CAS  PubMed  Google Scholar 

  17. Ding H, Tong J, Wu SC, Yin DK, Yuan XF, Wu JY, et al. Modulation of Kupffer cells on hepatic drug metabolism. World J Gastroenterol. 2004;10(9):1325–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laskin DL. Parenchymal and nonparenchymal cell interactions in hepatotoxicity. Adv Exp Med Biol. 1991;283:499–505.

    Article  CAS  PubMed  Google Scholar 

  19. Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci. 2007;96(1):2–15.

    Article  CAS  PubMed  Google Scholar 

  20. Kegel V, Pfeiffer E, Burkhardt B, Liu JL, Zeilinger K, Nüssler AK, et al. Subtoxic concentrations of hepatotoxic drugs Lead to Kupffer cell activation in a human in vitro liver model: an approach to study DILI. Mediat Inflamm. 2015;2015:14.

    Article  Google Scholar 

  21. Cholo M, Steel H, Fourie P, Germishuizen W, Anderson R. Clofazimine: current status and future prospects. J Antimicrob Chemother. 2011.

  22. Tyagi S, Ammerman NC, Li SY, Adamson J, Converse PJ, Swanson RV, et al. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci U S A. 2015;112(3):869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DrugBank. Clofazimine. In. drugbank.ca; 2013.

  24. Yoon GS, Keswani RK, Sud S, Rzeczycki PM, Murashov MD, Koehn TA, et al. Clofazimine biocrystal accumulation in macrophages upregulates interleukin 1 receptor antagonist production to induce a systemic anti-inflammatory state. Antimicrob Agents Chemother. 2016;60(6):3470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trexel J, Yoon GS, Keswani RK, McHugh C, Yeomans L, Vitvitsky V, et al. Macrophage-mediated Clofazimine sequestration is accompanied by a shift in host energy metabolism. J Pharm Sci. 2017;106(4):1162–74.

    Article  CAS  PubMed  Google Scholar 

  26. Baik J, Stringer KA, Mane G, Multiscale Distribution RGR. Bioaccumulation analysis of Clofazimine reveals a massive immune system-mediated xenobiotic sequestration response. Antimicrob Agents Chemother. 2013;57(3):1218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baik J, Rosania GR. Macrophages sequester Clofazimine in an intracellular liquid crystal-like supramolecular organization. PLoS One. 2012;7(10):e47494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon G, Sud S, Keswani R, Baik J, Standiford T, Stringer K, et al. Phagocytosed Clofazimine biocrystals can modulate innate immune signaling by inhibiting TNF alpha and boosting IL-1RA secretion. Mol Pharm. 2015;12:2517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keswani R, Baik J, Yeomans L, Hitzman C, Johnson A, Pawate A, et al. Chemical analysis of drug biocrystals: a role for Counterion transport pathways in intracellular drug disposition. Mol Pharm. 2015;12:2528–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaluarachchi SI, Fernandopulle BM, Gunawardane BP. Hepatic and haematological adverse reactions associated with the use of multidrug therapy in leprosy--a five year retrospective study. Indian J Lepr. 2001;73(2):121–9.

    CAS  PubMed  Google Scholar 

  31. Singh H, Nel B, Dey V, Tiwari P, Dulhani N. Adverse effects of multi-drug therapy in leprosy, a two years' experience (2006-2008) in tertiary health care Centre in the tribal region of Chhattisgarh state (Bastar, Jagdalpur). Lepr Rev. 2011;82(1):17–24.

    PubMed  Google Scholar 

  32. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rzeczycki P, Yoon GS, Keswani RK, Sud S, Stringer KA, Rosania GR. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy. Biomed Opt Express. 2017;8(2):860–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin S, Racz J, Tai M, Brooks K, Rzeczycki P, Heath L, et al. A role for low density lipoprotein receptor-related protein 1 in the cellular uptake of tissue plasminogen activator in the lungs. Pharm Res. 2015:1–11.

  36. Keswani RK, Yoon GS, Sud S, Stringer KA, Rosania GR. A far-red fluorescent probe for flow cytometry and image-based functional studies of xenobiotic sequestering macrophages. Cytometry A. 2015;87(9):855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Min KA, Rajeswaran WG, Oldenbourg R, Harris G, Keswani RK, Chiang M, et al. Massive Bioaccumulation and Self-assembly of Phenazine compounds in live cells. Adv Sci. 2015;2(8).

  38. van Rooijen N, Hendrikx E. Liposomes for specific depletion of macrophages from organs and tissues. In: Weissig V, editor. Liposomes: Humana Press; 2010. p. 189–203.

  39. Murashov MD, LaLone V, Rzeczycki PM, Keswani RK, Yoon GS, Sud S, Rajeswaran W, Larsen S, Stringer KA, Rosania GR. The physicochemical basis of Clofazimine-induced skin pigmentation. J Investig Dermatol 2017.

  40. Keswani R, Yoon G, Sud S, Stringer K, Rosania G. A far-red fluorescent probe for flow cytometric xenobiotic-sequestering cell functional Studies. Cytometry Part A 2015 (Accepted Manuscript).

  41. Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget. 2015;6(2):1143–56.

    Article  PubMed  Google Scholar 

  42. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96(4):729–46.

    Article  CAS  PubMed  Google Scholar 

  43. Logan R, Kong AC, Axcell E, Krise JP. Amine-containing molecules and the induction of an expanded lysosomal volume phenotype: a structure–activity relationship study. J Pharm Sci. 2014;103(5):1572–80.

    Article  CAS  PubMed  Google Scholar 

  44. Zhitomirsky B, Assaraf YG. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget. 2017;8(28):45117–32.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Andrejewski N, Punnonen E-L, Guhde G, Tanaka Y, Lüllmann-Rauch R, Hartmann D, von Figura K, Saftig P. Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem 1999;274(18):12692–12701.

  46. Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol (Clifton, NJ). 2008;445:77–88.

    Article  CAS  Google Scholar 

  47. Sri-Pathmanathan RM, Plumb JA, Fearon KC. Clofazimine alters the energy metabolism and inhibits the growth rate of a human lung-cancer cell line in vitro and in vivo. Int J Cancer. 1994;56(6):900–5.

    Article  CAS  PubMed  Google Scholar 

  48. Stokes WS. Humane endpoints for laboratory animals used in regulatory testing. ILAR J. 2002;43(Suppl_1):S31–8.

    CAS  PubMed  Google Scholar 

  49. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–85.

    Article  CAS  PubMed  Google Scholar 

  50. Hodgman MJ, Garrard AR. A review of acetaminophen poisoning. Crit Care Clin. 2012;28(4):499–516.

    Article  PubMed  Google Scholar 

  51. Dunne DW, Jones FM, Doenhoff MJ. The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha 1 and omega 1) from Schistosoma mansoni eggs. Parasitology. 1991;103(Pt 2):225–36.

    Article  CAS  PubMed  Google Scholar 

  52. Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol. 2013;4:39.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hams E, Aviello G, Fallon PG. The schistosoma granuloma: friend or foe? Front Immunol. 2013;4:89.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miller AC Jr, Reid WM. Methyldopa-induced granulomatous hepatitis. JAMA. 1976;235(18):2001–2.

    Article  PubMed  Google Scholar 

  55. Ishak KG, Kirchner JP, Dhar JK. Granulomas and cholestatic--hepatocellular injury associated with phenylbutazone. Report of two cases. Am J Dig Dis. 1977;22(7):611–7.

    Article  CAS  PubMed  Google Scholar 

  56. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, TAT T, Zou L, et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 2011;30(16):3242–58.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Giatromanolaki A, Kalamida D, Sivridis E, Karagounis IV, Gatter KC, Harris AL, et al. Increased expression of transcription factor EB (TFEB) is associated with autophagy, migratory phenotype and poor prognosis in non-small cell lung cancer. Lung Cancer. 2015;90(1):98–105.

    Article  PubMed  Google Scholar 

  59. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524(7565):361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang LM, Li B, Guan JJ, Xu HD, Shen GH, Gao QG, et al. Transcription factor EB is involved in autophagy-mediated chemoresistance to doxorubicin in human cancer cells. Acta Pharmacol Sin. 2017;38(9):1305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors thank Eric Bushong and Mark Ellisman for helping us with electron microscopy analysis done at the National Center for Microscopy and Imaging Research, University of California San Diego. The authors would also like to acknowledge support received from the Upjohn Research Award presented to GRR by the University Of Michigan College Of Pharmacy. This work was supported by NIH grant R01GM078200 to GRR.

Author information

Authors and Affiliations

Authors

Contributions

P.R., G.S.Y, J.B., K.A.S. and G.R.R designed the research. P.R., G.S.Y., J.B., E.B., and M.E. conducted the experiments. G.R.R. and K.A.S. contributed new reagents and analytical tools. P.R., G.S.Y and I. B. analyzed the data. P.R., G.S.Y., I.B., K.A.S. and G.R.R. wrote or contributed to the writing of the manuscript.

Corresponding author

Correspondence to Gus R. Rosania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzeczycki, P., Yoon, G.S., Keswani, R.K. et al. An Expandable Mechanopharmaceutical Device (2): Drug Induced Granulomas Maximize the Cargo Sequestering Capacity of Macrophages in the Liver. Pharm Res 36, 3 (2019). https://doi.org/10.1007/s11095-018-2541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2541-z

KEY WORDS

Navigation