Advertisement

Pharmaceutical Research

, 36:8 | Cite as

Mycobacterium Tuberculosis and Interactions with the Host Immune System: Opportunities for Nanoparticle Based Immunotherapeutics and Vaccines

  • Raymonde B. Bekale
  • Su-Mari Du Plessis
  • Nai-Jen Hsu
  • Jyoti R. Sharma
  • Samantha L. Sampson
  • Muazzam Jacobs
  • Mervin Meyer
  • Gene D. Morse
  • Admire DubeEmail author
Expert Review
Part of the following topical collections:
  1. Nanomedicine for Infectious Diseases

Abstract

Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a deadly infectious disease. The thin pipeline of new drugs for TB, the ineffectiveness in adults of the only vaccine available, i.e. the Bacillus Calmette-Guerin vaccine, and increasing global antimicrobial resistance, has reinvigorated interest in immunotherapies. Nanoparticles (NPs) potentiate the effect of immune modulating compounds (IMC), enabling cell targeting, improved transfection of antigens, enhanced compound stability and provide opportunities for synergistic action, via delivery of multiple IMCs. In this review we describe work performed in the application of NPs towards achieving immune modulation for TB treatment and vaccination. Firstly, we present a comprehensive review of M. tuberculosis and how the bacterium modulates the host immune system. We find that current work suggest great promise of NP based immunotherapeutics as novel treatments and vaccination systems. There is need to intensify research efforts in this field, and rationally design novel NP immunotherapeutics based on current knowledge of the mycobacteriology and immune escape mechanisms employed by M. tuberculosis.

KEY WORDS

immunotherapeutic nanoparticles immunotherapy for tuberculosis Mycobacterium tuberculosis nanoparticle based host directed therapy nanoparticles and vaccination 

Abbreviations

AA

Arachidonic acid

AG

Arabinogalactan

APCs

Antigen presenting cells

BCG

Bacillus Calmette-Guerin

CaM

Calmodulin

CLRs

C-type lectin receptors

CORVET

Core vacuole/endosome tether

DCs

Dendritic cells

EEA1

Early endosomal antigen 1

ER

Endoplasmic reticulum

HBHA

Heparin binding hemagglutinin adhesion protein

HIV

Human immunodeficiency virus

IMCs

Immune modulating compounds

INH

Isoniazid

LAMP

Lysosome-associated membrane proteins

LBPA

Lysobisphosphatidic acid

LM

Lipomannan

LTBI

Latent tuberculosis infection

Man-LAM

Mannosylated-lipoarabinomannan

MAs

Mycolic acids

MDR-TB

Multi-drug resistant tuberculosis

MHC

Major histocompatibility complex

MPs

Macrophages

NLRs

Nod-like receptors

NPs

Nanoparticles

NRP

Non-replicating persistent

PA

Phosphatidic acid

PAMPs

Pathogen associated molecular patterns

PG

Peptidoglycan

PI5P

Phosphatidylinositol 5-phosphate

PIM

Phosphatidylinositol mannoside

PIP3

Phosphatidylinositol 3-phosphate

PLGA

Poly(lactide)co-glycolide

PRRs

Pattern recognition receptors

PS

Phosphatidylserine

PtpA

Protein tyrosine phosphatase

RIF

Rifampicin

ROS/RNS

Reactive oxygen and nitrogen species

S1P

Sphingosine-1-phosphate

SPK

Sphingosine kinase

TB

Tuberculosis

TDR-TB

Totally-drug resistant tuberculosis

TLRs

Toll-like receptors

VPS33B

Vacuolar Protein Sorting 33B

WHO

World Health Organization

XDR

Extensively-drug resistant

XDR-TB

Extensively-drug resistant tuberculosis

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

Research reported in this publication was supported by the Fogarty International Center of the National Institutes of Health under Award Number K43TW010371-01A1 granted to AD. SLS is funded by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation (NRF) of South Africa, award number UID 86539. The authors acknowledge the SA MRC Centre for TB Research and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research for financial support for this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the SA MRC or the NRF. The authors wish to acknowledge Ms. Aaliya Tayob and Dr. Hanri Calitz for sketching figures in this manuscript.

References

  1. 1.
    Global Tuberculosis Report 2017.World Health Organization,Geneva. Available from: https://reliefweb.int/report/world/global-tuberculosis-report-2017.
  2. 2.
    Amina JM. Secretary-general’s remarks at high-level meeting on tuberculosis. United Nations. Secretary-General. 2018. Available from: https://www.un.org/sg/en/content/sg/statement/2018-09-26/secretary-generals-remarks-high-level-meeting-tuberculosis.
  3. 3.
    JAMA AF. Addressing the tuberculosis epidemic: 21st century research for an ancient disease. JAMA. 320(13):1315–6 Available from: https://jamanetwork.com/journals/jama/fullarticle/2702934?preview=true&utm_source=TrendMD&utm_medium=cpc&utm_campaign=J_Am_Med_TrendMD_1.
  4. 4.
    Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18:e183–e198.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Abate G, Hoft DF. Immunotherapy for tuberculosis: future prospects. ImmunoTargets Ther. 2016;5:37–45.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Amaral EP, Lasunskaia EB, D’Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microb Infect. 2016;18(1):11–20.CrossRefGoogle Scholar
  7. 7.
    Dube A, Reynolds JL. Modulation of innate immune responses using nanoparticles for infectious disease therapy. Curr Bionanotechnol. 2016;2:60–5.CrossRefGoogle Scholar
  8. 8.
    Kusner DJ. Mechanisms of mycobacterial persistence in tuberculosis. Clin ImmunolAcademic Press. 2005;114:239–47.CrossRefGoogle Scholar
  9. 9.
    Guler R, Brombacher F. Host-directed drug therapy for tuberculosis. Nat Chem Biol. 2015;11:748–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: a systematic review. Iran J Basic Med Sci Mashhad University of Medical Sciences. 2018;21:116–23.Google Scholar
  11. 11.
    Frick M. 2015 report on tuberculosis research funding trends, 2005–2014: a decade of data. New ork: Treat Action Group; 2015.Google Scholar
  12. 12.
    Cambau E, Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clin Microbiol Infect Elsevier. 2014;20:196–201.CrossRefGoogle Scholar
  13. 13.
    Forrellad MA, Klepp LI, Gioffré A, Sabio Y García J, Morbidoni HR, de la Paz Santangelo M, et al. Virulence factors of the mycobacterium tuberculosis complex. Virulence Taylor & Francis. 2013;4:3–66.CrossRefGoogle Scholar
  14. 14.
    Sinha P, Gupta A, Prakash P, Anupurba S, Tripathi R, Srivastava GN. Differentiation of mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments. BMC Infect Dis BioMed Central. 2016;16(1):123.CrossRefGoogle Scholar
  15. 15.
    Eleanor MG, Kumar AE, Dan MM. Review on Mycobacterium Tuberculosis. RRJMB. 2016. p. 2320–3528.Google Scholar
  16. 16.
    Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, et al. Physiology of mycobacteria. In: Poole RK, editor. Advances in microbial physiology. Amsterdam: Elsevier; 2009. p. 81–319.CrossRefGoogle Scholar
  17. 17.
    Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H. Mycobacterial outer membranes: in search of proteins. Trends Microbiol NIH Public Access. 2010;18:109–16.CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR. Visualization of mycobacterial membrane dynamics in live cells. J Am Chem Soc. 2017;139:3488–95.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Marrakchi H, Lanéelle M-A, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol Cell Press. 2014;21:67–85.Google Scholar
  20. 20.
    Hett EC, Rubin EJ. Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev American Society for Microbiology. 2008;72:126–56.CrossRefGoogle Scholar
  21. 21.
    Merget B, Zilian D, Müller T, Sotriffer CA. MycPermCheck: the mycobacterium tuberculosis permeability prediction tool for small molecules. Bioinformatics Oxford University Press. 2013;29:62–8.Google Scholar
  22. 22.
    Louw GE, Sampson SL. Implications of chromosomal mutations for mycobacterial drug resistance. In: Arora G, Sajid A, Kalia VC, editors. Drug resistance in bacteria, fungi, malaria, and cancer. Cham: Springer International Publishing; 2017. p. 233–62.CrossRefGoogle Scholar
  23. 23.
    Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis : success through dormancy. FEMS Microbiol Rev Oxford University Press. 2012;36:514–32.CrossRefGoogle Scholar
  24. 24.
    Helaine S, Holden DW, Mouton JM, Sampson SL. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology. 2016;162:966–78.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rittershaus ESC, Baek S-H, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe NIH Public Access. 2013;13:643–51.CrossRefGoogle Scholar
  26. 26.
    Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004;230:13–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–72.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wayne LG, Sohaskey CD. Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol. 2001;55(1):139–63.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gideon HP, Flynn JL. Latent tuberculosis: what the host "sees"? Immunol Res NIH Public Access. 2011;50:202–12.Google Scholar
  30. 30.
    Gülbay BE, Gürkan ÖU, Yıldız ÖA, Önen ZP, Erkekol FÖ, Baççıoğlu A, et al. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir Med. 2006;100:1834–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith T, Wolff KA, Nguyen L. Molecular biology of drug resistance in mycobacterium tuberculosis. Curr Top Microbiol Immunol NIH Public Access. 2013;374:53–80.Google Scholar
  32. 32.
    Velásquez GE, Brooks MB, Coit JM, Pertinez H, Vargas Vásquez D, Sánchez Garavito E, et al. Efficacy and safety of high-dose rifampin in pulmonary tuberculosis: a randomized controlled trial. Am J Respir Crit Care Med. 2018;198(5):657–66.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Savic R, Weiner M, MacKenzie W, Engle M, Whitworth W, Johnson J, et al. Defining the optimal dose of rifapentine for pulmonary tuberculosis: exposure-response relations from two phase II clinical trials. Clin Pharmacol Ther. 2017;102:321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Helbig ET, Opitz B, Sander LE. Adjuvant immunotherapies as a novel approach to bacterial infections. Immunotherapy. Future Medicine Ltd London, UK. 2013;5:365–81.Google Scholar
  35. 35.
    Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol. 2012;2012:1–14.CrossRefGoogle Scholar
  36. 36.
    Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev Wiley/Blackwell. 2016;273:156–79.CrossRefGoogle Scholar
  37. 37.
    Pauwels A-M, Trost M, Beyaert R, Hoffmann E. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 2017;38:407–22.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chua J, Deretic V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J Biol Chem American Society for Biochemistry and Molecular Biology. 2004;279:36982–92.Google Scholar
  39. 39.
    Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe Cell Presss. 2008;3:399–407.CrossRefGoogle Scholar
  40. 40.
    Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell Press. 2007;130:37–50.Google Scholar
  41. 41.
    Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264:182–203.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Queval CJ, Song O-R, Carralot J-P, Saliou J-M, Bongiovanni A, Deloison G, et al. Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep Elsevier. 2017;20:3188–98.CrossRefGoogle Scholar
  43. 43.
    Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A National Academy of Sciences. 2011;108:19371–6.CrossRefGoogle Scholar
  44. 44.
    Hashimi K, Porter B, Iyer SS, Zulfiqar DJ, Malik A, Thompson CR, et al. Cutting edge: mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol Ref. 2003;170:2811–5.CrossRefGoogle Scholar
  45. 45.
    Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol Frontiers Media SA. 2014;5:614.Google Scholar
  47. 47.
    Meena LS. Rajni. Survival mechanisms of pathogenic mycobacterium tuberculosis H37Rv. FEBS J. 2010;277:2416–27.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Leary S, O’Sullivan MP, Keane J. IL-10 blocks phagosome maturation in Mycobacterium tuberculosis– infected human macrophages. Am J Respir Cell Mol Biol American Thoracic Society. 2011;45(1):172–80.CrossRefGoogle Scholar
  49. 49.
    Pagán AJ, Ramakrishnan L. The formation and function of granulomas. Annu Rev Immunol. 2018;36:639–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, et al. Dominant TNF-α+ Mycobacterium tuberculosis–specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med. 2011;17:372–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med Rockefeller University Press. 2008;205:105–15.Google Scholar
  52. 52.
    Triebold BR, Bloom JL, Flynn AM, Caruso N, Serbina E, Klein K, et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ. Yet Succumb to Tuberculosis J Immunol. 1999;162:5407–16.PubMedGoogle Scholar
  53. 53.
    Canaday DH, Wilkinson RJ, Li Q, Harding CV, Silver RF, Boom WH. CD4(+) and CD8(+) T cells kill intracellular mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol ssociation of Immunologists. 2001;167:2734–42.CrossRefGoogle Scholar
  54. 54.
    Tailleux L, Schwartz O, Herrmann J-L, Pivert E, Jackson M, Amara A, et al. DC-SIGN is the major mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med Rockefeller University Press. 2003;197:121–7.Google Scholar
  55. 55.
    Prendergast KA, Kirman JR. Dendritic cell subsets in mycobacterial infection: control of bacterial growth and T cell responses. Tuberculosis Churchill Livingstone. 2013;93(2):115–22.CrossRefGoogle Scholar
  56. 56.
    Tian T, Woodworth J, Sköld M, Behar SM. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol American Association of Immunologists. 2005;175:3268–72.Google Scholar
  57. 57.
    Keeton R, Allie N, Dambuza I, Abel B, Hsu N-J, Sebesho B, et al. Soluble TNFRp75 regulates host protective immunity against mycobacterium tuberculosis. J Clin Invest American Society for Clinical Investigation. 2014;124:1537–51.CrossRefGoogle Scholar
  58. 58.
    Khader SA, Partida-Sanchez S, Bell G, Jelley-Gibbs DM, Swain S, Pearl JE, et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after mycobacterium tuberculosis infection. J Exp Med. 2006;203:1805–15.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature Nature Publishing Group. 1992;360:258–61.Google Scholar
  60. 60.
    Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109–18.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Dambuza IM, Keeton R, Hsu N-J, Allie N, Quesniaux VFJ, Ryffel B, et al. Persistent p55TNFR expression impairs T cell responses during chronic tuberculosis and promotes reactivation. Sci Rep Nature Publishing Group. 2016;6:39499.Google Scholar
  62. 62.
    Zhang W, Chen Z, Li F, Kamencic H, Juurlink B, Gordon JR, et al. Tumour necrosis factor-alpha (TNF-alpha) transgene-expressing dendritic cells (DCs) undergo augmented cellular maturation and induce more robust T-cell activation and anti-tumour immunity than DCs generated in recombinant TNF-alpha. Immunology. 2003;108:177–88.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ahmad S, Zamry AA, Tan H-TT, Wong KK, Lim J, Mohamud R. Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. Mol Immunol. 2017;91:123–33.PubMedCrossRefGoogle Scholar
  64. 64.
    Griffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD, et al. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun. 2016;7:13894.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS, et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med. 1989;320:545–50.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lahey T, Mackenzie T, Arbeit RD, Bakari M, Mtei L, Matee M, et al. Recurrent tuberculosis risk among HIV-infected adults in Tanzania with prior active tuberculosis. Clin Infect Dis Oxford University Press. 2013;56(1):151–8.CrossRefGoogle Scholar
  67. 67.
    Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J, et al. Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med. 2000;192:347–58.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178:2243–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to mycobacterium tuberculosis infection. J Exp Med. 1993;178:2249–54.PubMedCrossRefGoogle Scholar
  70. 70.
    Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest American Society for Clinical Investigation. 1997;100:2658–64.CrossRefGoogle Scholar
  71. 71.
    Chan J, Mehta S, Bharrhan S, Chen Y, Achkar JM, Casadevall A, et al. The role of B cells and humoral immunity in mycobacterium tuberculosis infection. Semin Immunol NIH Public Access. 2014;26:588–600.CrossRefGoogle Scholar
  72. 72.
    Hsu N-J, Francisco NM, Keeton R, Allie N, Quesniaux VFJ, Ryffel B, et al. Myeloid and T cell-derived tnf protects against central nervous system tuberculosis. Front Immunol. 2017;8:180.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against mycobacterium tuberculosis infection. Immunol Rev NIH Public Access. 2015;264:167–81.Google Scholar
  74. 74.
    Steingart KR, Dendukuri N, Henry M, Schiller I, Nahid P, Hopewell PC, et al. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin Vaccine Immunol American Society for Microbiology. 2009;16:260–76.CrossRefGoogle Scholar
  75. 75.
    Brown RM, Cruz O, Brennan M, Gennaro ML, Schlesinger L, Skeiky YAW, et al. Lipoarabinomannan-reactive human secretory immunoglobulin a responses induced by mucosal Bacille Calmette-Guérin vaccination. J Infect Dis Oxford University Press. 2003;187:513–7.Google Scholar
  76. 76.
    de Vallière S, Abate G, Blazevic A, Heuertz RM, Hoft DF. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun American Society for Microbiology. 2005;73:6711–20.CrossRefGoogle Scholar
  77. 77.
    Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature. 2001;412:190–4.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Williams A, James BW, Bacon J, Hatch KA, Hatch GJ, Hall GA, et al. An assay to compare the infectivity of mycobacterium tuberculosis isolates based on aerosol infection of Guinea pigs and assessment of bacteriology. Tuberculosis (Edinb) Elsevier. 2005;85:177–84.CrossRefGoogle Scholar
  79. 79.
    Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A, et al. Enhanced control of mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. Salgame P, editor. PLOS Pathog Public Library of Science. 2017;13:e1006250.CrossRefGoogle Scholar
  80. 80.
    Greco E, Quintiliani G, Santucci MB, Serafino A, Ciccaglione AR, Marcantonio C, et al. Janus-faced liposomes enhance antimicrobial innate immune response in mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 2012;109:E1360–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Poerio N, Bugli F, Taus F, Santucci MB, Rodolfo C, Cecconi F, et al. Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance. Sci Rep. 2017;7:45120.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine Elsevier. 2014;10:831–8.CrossRefGoogle Scholar
  83. 83.
    Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230:38–50.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Chan G, Chan W, Sze D, et al. J Hematol Oncol. 2009;2:25.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Xu S, Huo J, Lee K-G, Kurosaki T, Lam K-P. Phospholipase Cγ2 is critical for Dectin-1-mediated ca 2+ flux and cytokine production in dendritic cells. J Biol Chem. 2009;284:7038–46.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, et al. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm Res. 2015;32:2713–26.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hwang J, Son J, Seo Y, Jo Y, Lee K, Lee D, et al. Functional silica nanoparticles conjugated with beta-glucan to deliver anti-tuberculosis drug molecules. J Ind Eng Chem. 2018;58:376–85.CrossRefGoogle Scholar
  88. 88.
    Ballester M, Nembrini C, Dhar N, de Titta A, de Piano C, Pasquier M, et al. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine Elsevier. 2011;29:6959–66.CrossRefGoogle Scholar
  89. 89.
    Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature Nature Publishing Group. 1995;376:177–80.Google Scholar
  90. 90.
    Giri PK, Verma I, Khuller GK. Enhanced immunoprotective potential of mycobacterium tuberculosis Ag85 complex protein based vaccine against airway mycobacterium tuberculosis challenge following intranasal administration. FEMS Immunol Med Microbiol Oxford University Press. 2006;47:233–41.CrossRefGoogle Scholar
  91. 91.
    Stylianou E, Diogo GR, Pepponi I, van Dolleweerd C, Arias MA, Locht C, et al. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur J Immunol. 2014;44:440–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Belyakov I, Ahlers J. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol. 2009;189:6883–92.CrossRefGoogle Scholar
  93. 93.
    Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Randall Deck R, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med Nature Publishing Group. 1996;2:893–8.CrossRefGoogle Scholar
  94. 94.
    Langermans JAM, Doherty TM, Vervenne RAW, van der Laan T, Lyashchenko K, Greenwald R, et al. Protection of macaques against mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine Elsevier. 2005;23:2740–50.CrossRefGoogle Scholar
  95. 95.
    Kaufmann SHE. Is the development of a new tuberculosis vaccine possible? Nat Med. 2000;6:955–60.PubMedCrossRefGoogle Scholar
  96. 96.
    van Dissel JT, Soonawala D, Joosten SA, Prins C, Arend SM, Bang P, et al. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine. 2011;29:2100–009.PubMedCrossRefGoogle Scholar
  97. 97.
    van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K, et al. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine. 2010;28:3571–81.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hussein J, Zewdie M, Yamuah L, Bedru A, Abebe M, Dagnew AF, et al. A phase I, open-label trial on the safety and immunogenicity of the adjuvanted tuberculosis subunit vaccine H1/IC31® in people living in a TB-endemic area. Trials. 2018;19:24.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yu F, Wang J, Dou J, Yang H, He X, Xu W, et al. Nanoparticle-based adjuvant for enhanced protective efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 against mycobacterium tuberculosis infection. Nanomed Nanotechnol, Biol MedElsevier. 2012;8:1337–44.CrossRefGoogle Scholar
  100. 100.
    Rose F, Wern JE, Ingvarsson PT, van de Weert M, Andersen P, Follmann F, et al. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: a quality-by-design approach. J Control ReleaseElsevier. 2015;210:48–57.CrossRefGoogle Scholar
  101. 101.
    Carlétti D, Morais da Fonseca D, Gembre AF, Masson AP, Weijenborg Campos L, LCC L, et al. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6′-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in mycobacterium bovis BCG-primed mice. Clin Vaccine Immunol. 2013;20:1162–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AGA, Perrie Y. PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target. 2008;16:282–93.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KLMC, Friggen AH, et al. Pulmonary delivery of DNA encoding mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine Elsevier. 2009;27:4010–7.CrossRefGoogle Scholar
  104. 104.
    O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines. 2003;2:269–83.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Rosada RS, Torre L, Frantz FG, Trombone AP, Zárate-Bladés CR, Fonseca DM, et al. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol. 2008;9:38.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, et al. Evaluation of a novel vaccine (HVJ–liposome/HSP65 DNA + IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. VaccineElsevier. 2007;25:2990–3.Google Scholar
  107. 107.
    Penn-Nicholson A, Tameris M, Smit E, Day TA, Musvosvi M, Jayashankar L, et al. Safety and immunogenicity of the novel tuberculosis vaccine ID93+ GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med. 2018;6(4):287–98.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Khoshnood S, Heidary M, Haeili M, Drancourt M, Darban-Sarokhalil D, Nasiri MJ, et al. Novel vaccine candidates against Mycobacterium tuberculosis. Int J Biol Macromol. 2018;120:180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Fauci AS. Addressing the tuberculosis epidemic. JAMA. 2018;320:1315–16.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raymonde B. Bekale
    • 1
  • Su-Mari Du Plessis
    • 2
  • Nai-Jen Hsu
    • 3
  • Jyoti R. Sharma
    • 4
  • Samantha L. Sampson
    • 2
  • Muazzam Jacobs
    • 3
    • 4
    • 5
  • Mervin Meyer
    • 6
  • Gene D. Morse
    • 7
  • Admire Dube
    • 1
    Email author return OK on get
  1. 1.Discipline of Pharmaceutics, School of PharmacyUniversity of the Western CapeCape TownSouth Africa
  2. 2.NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
  3. 3.Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
  4. 4.National Health Laboratory ServiceJohannesburgSouth Africa
  5. 5.Immunology of Infectious Disease Research UnitSouth African Medical Research CouncilCape TownSouth Africa
  6. 6.DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of BiotechnologyUniversity of the Western Cape (UWC)Cape TownSouth Africa
  7. 7.AIDS Clinical Trials Group Pharmacology Specialty Laboratory, New York State Center of Excellence in Bioinformatics and Life Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUSA

Personalised recommendations