Advertisement

Pharmaceutical Research

, 35:221 | Cite as

Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy

  • Roselena Silvestri Schuh
  • Juliana Bidone
  • Edina Poletto
  • Camila Vieira Pinheiro
  • Gabriela Pasqualim
  • Talita Giacomet de Carvalho
  • Mirian Farinon
  • Dirnete da Silva Diel
  • Ricardo Machado Xavier
  • Guilherme Baldo
  • Ursula Matte
  • Helder Ferreira TeixeiraEmail author
Research Paper

Abstract

Purpose

This study demonstrates the nasal administration (NA) of nanoemulsions complexed with the plasmid encoding for IDUA protein (pIDUA) as an attempt to reach the brain aiming at MPS I gene therapy.

Methods

Formulations composed of DOPE, DOTAP, MCT (NE), and DSPE-PEG (NE-PEG) were prepared by high-pressure homogenization, and assessed in vitro on human fibroblasts from MPS I patients and in vivo on MPS I mice for IDUA production and gene expression.

Results

The physicochemical results showed that the presence of DSPE-PEG in the formulations led to smaller and more stable droplets even when submitted to dilution in simulated nasal medium (SNM). In vitro assays showed that pIDUA/NE-PEG complexes were internalized by cells, and led to a 5% significant increase in IDUA activity, besides promoting a two-fold increase in IDUA expression. The NA of pIDUA/NE-PEG complexes to MPS I mice demonstrated the ability to reach the brain, promoting increased IDUA activity and expression in this tissue, as well as in kidney and spleen tissues after treatment. An increase in serum IL-6 was observed after treatment, although with no signs of tissue inflammatory infiltrate according to histopathology and CD68 assessments.

Conclusions

These findings demonstrated that pIDUA/NE-PEG complexes could efficiently increase IDUA activity in vitro and in vivo after NA, and represent a potential treatment for the neurological impairment present in MPS I patients.

KEY WORDS

Gene therapy mucopolysaccharidosis type I nanoemulsion nasal administration nonviral vectors 

Abbreviations

BNE

Blank cationic nanoemulsions

BNE-PEG

Blank cationic nanoemulsions containing DSPE-PEG

DOPE

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP

1,2-dioleoyl-sn-glycero-3-trimethylammonium propane

DSPE-PEG

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]

IDUA

α-L-iduronidase

IL-6

Interleukin-6

MCT

Medium Chain Triglycerides

NA

Nasal administration

pIDUA

Plasmid encoding for IDUA protein

pIDUA/NE

Nanoemulsion complexed with pIDUA

pIDUA/NE-PEG

Nanoemulsion containing DSPE-PEG complexed with pIDUA

SNM

Simulated nasal medium

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

Authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq), Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS, #17/2551–0001273-9), and HCPA Foundation for Incentive of Research (FIPE/HCPA, #150215) for the financial support. J. Bidone wishes to thank the Foundation for Research Support of the State of Rio Grande do Sul (DOCFIX/FAPERGS) and R. S. Schuh would like to thank CNPq (#151021/2018–0) for their postdoctoral grant. H. F. Teixeira, G. Baldo, and U. Matte are recipients of CNPq research fellowship. The authors have made substantial contributions to all of the following: R. S. Schuh and J. Bidone contributed to the conception and design of the study. G. Pasqualim, T. G. de Carvalho, É. Poletto, C. V. Pinheiro, D. S. Diel, M. Farinon, and R. M. Xavier contributed to the acquisition of data, analysis, and interpretation of data. G. Baldo, U. Matte, and H. F. Teixeira contributed to drafting the article and revising it critically for important intellectual content. All authors approved the final version to be submitted. All institutional and national guidelines for the care and use of patients’ material were followed and all patients and/or their caregivers gave written informed consent for this study. All institutional and national guidelines for the care and use of laboratory animals were followed (Hospital de Clínicas de Porto Alegre Ethics Committee #15–0215). All authors declare that they have no conflict of interest.

Supplementary material

11095_2018_2503_MOESM1_ESM.docx (533 kb)
ESM 1 (DOCX 533 kb)

References

  1. 1.
    Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–49.CrossRefGoogle Scholar
  2. 2.
    Baldo G, Mayer FQ, Martinelli B, Meyer FS, Burin M, Meurer L, et al. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice. Cytotherapy. 2012;14(7):860–7.CrossRefGoogle Scholar
  3. 3.
    Benedict C, Frey WH 2nd, Schioth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol. 2011;46(2–3):112–5.CrossRefGoogle Scholar
  4. 4.
    Bidone J, Schuh RS, Farinon M, Poletto É, Pasqualim G, de Oliveira PG, et al. Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice. Int J Pharm. 2018;548(1):151–8.CrossRefGoogle Scholar
  5. 5.
    Bruxel F, Vilela JMC, Andrade MS, Malachias A, Perez CA, Magalhaes-Paniago R, et al. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes. Col Surf B. 2013;112:530–6.CrossRefGoogle Scholar
  6. 6.
    Camassola M, Braga LM, Delgado-Cañedo A, Dalberto TP, Matte U, Burin M, et al. Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model. J Inherit Metab Dis. 2005;28(6):1035–43.CrossRefGoogle Scholar
  7. 7.
    Chan C-L, Majzoub RN, Shirazi RS, Ewert KK, Chen Y-J, Liang KS, et al. Endosomal escape and transfection efficiency of PEGylated cationic liposome–DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials. 2012;33(19):4928–35.CrossRefGoogle Scholar
  8. 8.
    Fraga M, Bruxel F, Lagranha VL, Teixeira HF, Matte U. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells. Int J Nanomedicine. 2011;6:2213–20.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schuh RS, Poletto É, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, Giugliani R, et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release. 2018;288:23-33.CrossRefGoogle Scholar
  10. 10.
    Fraga M, de Carvalho TG, Bidone J, Schuh RS, Matte U, Teixeira HF. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model. Int J Nanomedicine. 2017;12:2061–7.CrossRefGoogle Scholar
  11. 11.
    Ghori MU, Mahdi MH, Smith AM, Conway BR. Nasal Drug Delivery Systems: An Overview. Am J Pharmacol Sci. 2015;3(5):110–9.Google Scholar
  12. 12.
    Giugliani R. Mucopolysacccharidoses: from understanding to treatment, a century of discoveries. Genet Mol Biol. 2012;35(4):924–31.CrossRefGoogle Scholar
  13. 13.
    Giugliani R, Federhen A, Rojas MVM, Vieira T, Artigalás O, Pinto LL, et al. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment. Genet Mol Biol. 2010;33(4):589–604.CrossRefGoogle Scholar
  14. 14.
    Hanson LR, Fine JM, Svitak AL, Faltesek KA. Intranasal administration of CNS therapeutics to awake mice. J Vis Exp. 2013;74:4440.Google Scholar
  15. 15.
    Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine. 2008;26(18):2225–33.CrossRefGoogle Scholar
  16. 16.
    Kwon SM, Nam HY, Nam T, Park K, Lee S, Kim K, et al. In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. J Control Release. 2008;128(1):89–97.CrossRefGoogle Scholar
  17. 17.
    Liu C-H, Yu S-Y. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf B Biointerfaces. 2010;79(2):509–15.CrossRefGoogle Scholar
  18. 18.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefGoogle Scholar
  19. 19.
    Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.CrossRefGoogle Scholar
  20. 20.
    Lovelyn C, Attama A. Current state of Nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2(5A):626–39.CrossRefGoogle Scholar
  21. 21.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.Google Scholar
  22. 22.
    Makidon PE, Belyakov IM, Blanco LP, Janczak KW, Landers J, Bielinska AU, et al. Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking. Eur J Immunol. 2012 Aug;42(8):2073–86.CrossRefGoogle Scholar
  23. 23.
    Masiuk T, Kadakia P, Wang Z. Development of a physiologically relevant dripping analytical method using simulated nasal mucus for nasal spray formulation analysis. J Pharm Anal. 2016;6(5):283–91.CrossRefGoogle Scholar
  24. 24.
    Mayer FQ, Adorne MD, Bender EA, de Carvalho TG, Dilda AC, Pohlmann AR, et al. Laronidase-functionalized multiple-Wal l lipid-Core Nanocapsules: promising formulation for a more effective treatment of Mucopolysaccharidosis type I. Pharm Res. 2015;32:941–54.CrossRefGoogle Scholar
  25. 25.
    Miller MA, Stabenow JM, Parvathareddy J, Wodowski AJ, Fabrizio TP, Bina XR, et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One. 2012;7(2):e31359.CrossRefGoogle Scholar
  26. 26.
    Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69.CrossRefGoogle Scholar
  27. 27.
    Osborn MJ, McElmurry RT, Peacock B, Tolar J, Blazar BR. Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther. 2008;16(8):1459–66.CrossRefGoogle Scholar
  28. 28.
    Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res. 2015;9(1):GE01–6.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schuh R, Baldo G, Teixeira H. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Del. 2016;13(12):1709–18.CrossRefGoogle Scholar
  30. 30.
    Schuh RS, Poletto É, Fachel FNS, Matte U, Baldo G, Teixeira HF. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: implications for CRISPR/Cas technology. J Colloid Interface Sci. 2018;530:243–55.CrossRefGoogle Scholar
  31. 31.
    Schuh RS, de Carvalho TG, Giugliani R, Matte U, Baldo G, Teixeira HF. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm. 2018;122:158–66.CrossRefGoogle Scholar
  32. 32.
    Teixeira HF, Bruxel F, Fraga M, Schuh RS, Zorzi GK, Matte U, et al. Cationic nanoemulsions as nucleic acids delivery systems. Int J Pharm. 2017;534(1–2):356–67.CrossRefGoogle Scholar
  33. 33.
    Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond). 2014;9(2):295–312.CrossRefGoogle Scholar
  34. 34.
    Yadav S, Gandham SK, Panicucci R, Amiji MM. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFalpha siRNA in prevention of experimental neuroinflammation. Nanomedicine. 2016;12(4):987–1002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roselena Silvestri Schuh
    • 1
    • 2
  • Juliana Bidone
    • 1
  • Edina Poletto
    • 2
    • 3
  • Camila Vieira Pinheiro
    • 2
  • Gabriela Pasqualim
    • 2
    • 3
  • Talita Giacomet de Carvalho
    • 2
    • 3
  • Mirian Farinon
    • 4
  • Dirnete da Silva Diel
    • 1
    • 3
  • Ricardo Machado Xavier
    • 4
  • Guilherme Baldo
    • 2
    • 3
  • Ursula Matte
    • 2
    • 3
  • Helder Ferreira Teixeira
    • 1
    Email author
  1. 1.Pharmaceutical Sciences Graduate ProgramUFRGSPorto AlegreBrazil
  2. 2.Gene Therapy CenterHospital de Clinicas de Porto AlegrePorto AlegreBrazil
  3. 3.Genetics and Molecular Biology Graduate ProgramUFRGSPorto AlegreBrazil
  4. 4.Reumathology ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations