Skip to main content

Advertisement

Log in

Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study demonstrates the nasal administration (NA) of nanoemulsions complexed with the plasmid encoding for IDUA protein (pIDUA) as an attempt to reach the brain aiming at MPS I gene therapy.

Methods

Formulations composed of DOPE, DOTAP, MCT (NE), and DSPE-PEG (NE-PEG) were prepared by high-pressure homogenization, and assessed in vitro on human fibroblasts from MPS I patients and in vivo on MPS I mice for IDUA production and gene expression.

Results

The physicochemical results showed that the presence of DSPE-PEG in the formulations led to smaller and more stable droplets even when submitted to dilution in simulated nasal medium (SNM). In vitro assays showed that pIDUA/NE-PEG complexes were internalized by cells, and led to a 5% significant increase in IDUA activity, besides promoting a two-fold increase in IDUA expression. The NA of pIDUA/NE-PEG complexes to MPS I mice demonstrated the ability to reach the brain, promoting increased IDUA activity and expression in this tissue, as well as in kidney and spleen tissues after treatment. An increase in serum IL-6 was observed after treatment, although with no signs of tissue inflammatory infiltrate according to histopathology and CD68 assessments.

Conclusions

These findings demonstrated that pIDUA/NE-PEG complexes could efficiently increase IDUA activity in vitro and in vivo after NA, and represent a potential treatment for the neurological impairment present in MPS I patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BNE:

Blank cationic nanoemulsions

BNE-PEG:

Blank cationic nanoemulsions containing DSPE-PEG

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP:

1,2-dioleoyl-sn-glycero-3-trimethylammonium propane

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]

IDUA:

α-L-iduronidase

IL-6:

Interleukin-6

MCT:

Medium Chain Triglycerides

NA:

Nasal administration

pIDUA:

Plasmid encoding for IDUA protein

pIDUA/NE:

Nanoemulsion complexed with pIDUA

pIDUA/NE-PEG:

Nanoemulsion containing DSPE-PEG complexed with pIDUA

SNM:

Simulated nasal medium

References

  1. Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–49.

    Article  CAS  Google Scholar 

  2. Baldo G, Mayer FQ, Martinelli B, Meyer FS, Burin M, Meurer L, et al. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice. Cytotherapy. 2012;14(7):860–7.

    Article  CAS  Google Scholar 

  3. Benedict C, Frey WH 2nd, Schioth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol. 2011;46(2–3):112–5.

    Article  CAS  Google Scholar 

  4. Bidone J, Schuh RS, Farinon M, Poletto É, Pasqualim G, de Oliveira PG, et al. Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice. Int J Pharm. 2018;548(1):151–8.

    Article  CAS  Google Scholar 

  5. Bruxel F, Vilela JMC, Andrade MS, Malachias A, Perez CA, Magalhaes-Paniago R, et al. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes. Col Surf B. 2013;112:530–6.

    Article  CAS  Google Scholar 

  6. Camassola M, Braga LM, Delgado-Cañedo A, Dalberto TP, Matte U, Burin M, et al. Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model. J Inherit Metab Dis. 2005;28(6):1035–43.

    Article  CAS  Google Scholar 

  7. Chan C-L, Majzoub RN, Shirazi RS, Ewert KK, Chen Y-J, Liang KS, et al. Endosomal escape and transfection efficiency of PEGylated cationic liposome–DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials. 2012;33(19):4928–35.

    Article  CAS  Google Scholar 

  8. Fraga M, Bruxel F, Lagranha VL, Teixeira HF, Matte U. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells. Int J Nanomedicine. 2011;6:2213–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schuh RS, Poletto É, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, Giugliani R, et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release. 2018;288:23-33.

    Article  CAS  Google Scholar 

  10. Fraga M, de Carvalho TG, Bidone J, Schuh RS, Matte U, Teixeira HF. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model. Int J Nanomedicine. 2017;12:2061–7.

    Article  Google Scholar 

  11. Ghori MU, Mahdi MH, Smith AM, Conway BR. Nasal Drug Delivery Systems: An Overview. Am J Pharmacol Sci. 2015;3(5):110–9.

    CAS  Google Scholar 

  12. Giugliani R. Mucopolysacccharidoses: from understanding to treatment, a century of discoveries. Genet Mol Biol. 2012;35(4):924–31.

    Article  CAS  Google Scholar 

  13. Giugliani R, Federhen A, Rojas MVM, Vieira T, Artigalás O, Pinto LL, et al. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment. Genet Mol Biol. 2010;33(4):589–604.

    Article  CAS  Google Scholar 

  14. Hanson LR, Fine JM, Svitak AL, Faltesek KA. Intranasal administration of CNS therapeutics to awake mice. J Vis Exp. 2013;74:4440.

    Google Scholar 

  15. Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine. 2008;26(18):2225–33.

    Article  CAS  Google Scholar 

  16. Kwon SM, Nam HY, Nam T, Park K, Lee S, Kim K, et al. In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. J Control Release. 2008;128(1):89–97.

    Article  CAS  Google Scholar 

  17. Liu C-H, Yu S-Y. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf B Biointerfaces. 2010;79(2):509–15.

    Article  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  19. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  Google Scholar 

  20. Lovelyn C, Attama A. Current state of Nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2(5A):626–39.

    Article  CAS  Google Scholar 

  21. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  Google Scholar 

  22. Makidon PE, Belyakov IM, Blanco LP, Janczak KW, Landers J, Bielinska AU, et al. Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking. Eur J Immunol. 2012 Aug;42(8):2073–86.

    Article  CAS  Google Scholar 

  23. Masiuk T, Kadakia P, Wang Z. Development of a physiologically relevant dripping analytical method using simulated nasal mucus for nasal spray formulation analysis. J Pharm Anal. 2016;6(5):283–91.

    Article  Google Scholar 

  24. Mayer FQ, Adorne MD, Bender EA, de Carvalho TG, Dilda AC, Pohlmann AR, et al. Laronidase-functionalized multiple-Wal l lipid-Core Nanocapsules: promising formulation for a more effective treatment of Mucopolysaccharidosis type I. Pharm Res. 2015;32:941–54.

    Article  CAS  Google Scholar 

  25. Miller MA, Stabenow JM, Parvathareddy J, Wodowski AJ, Fabrizio TP, Bina XR, et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One. 2012;7(2):e31359.

    Article  CAS  Google Scholar 

  26. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69.

    Article  CAS  Google Scholar 

  27. Osborn MJ, McElmurry RT, Peacock B, Tolar J, Blazar BR. Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther. 2008;16(8):1459–66.

    Article  CAS  Google Scholar 

  28. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res. 2015;9(1):GE01–6.

    PubMed  PubMed Central  Google Scholar 

  29. Schuh R, Baldo G, Teixeira H. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Del. 2016;13(12):1709–18.

    Article  CAS  Google Scholar 

  30. Schuh RS, Poletto É, Fachel FNS, Matte U, Baldo G, Teixeira HF. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: implications for CRISPR/Cas technology. J Colloid Interface Sci. 2018;530:243–55.

    Article  CAS  Google Scholar 

  31. Schuh RS, de Carvalho TG, Giugliani R, Matte U, Baldo G, Teixeira HF. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm. 2018;122:158–66.

    Article  CAS  Google Scholar 

  32. Teixeira HF, Bruxel F, Fraga M, Schuh RS, Zorzi GK, Matte U, et al. Cationic nanoemulsions as nucleic acids delivery systems. Int J Pharm. 2017;534(1–2):356–67.

    Article  CAS  Google Scholar 

  33. Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond). 2014;9(2):295–312.

    Article  CAS  Google Scholar 

  34. Yadav S, Gandham SK, Panicucci R, Amiji MM. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFalpha siRNA in prevention of experimental neuroinflammation. Nanomedicine. 2016;12(4):987–1002.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq), Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS, #17/2551–0001273-9), and HCPA Foundation for Incentive of Research (FIPE/HCPA, #150215) for the financial support. J. Bidone wishes to thank the Foundation for Research Support of the State of Rio Grande do Sul (DOCFIX/FAPERGS) and R. S. Schuh would like to thank CNPq (#151021/2018–0) for their postdoctoral grant. H. F. Teixeira, G. Baldo, and U. Matte are recipients of CNPq research fellowship. The authors have made substantial contributions to all of the following: R. S. Schuh and J. Bidone contributed to the conception and design of the study. G. Pasqualim, T. G. de Carvalho, É. Poletto, C. V. Pinheiro, D. S. Diel, M. Farinon, and R. M. Xavier contributed to the acquisition of data, analysis, and interpretation of data. G. Baldo, U. Matte, and H. F. Teixeira contributed to drafting the article and revising it critically for important intellectual content. All authors approved the final version to be submitted. All institutional and national guidelines for the care and use of patients’ material were followed and all patients and/or their caregivers gave written informed consent for this study. All institutional and national guidelines for the care and use of laboratory animals were followed (Hospital de Clínicas de Porto Alegre Ethics Committee #15–0215). All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder Ferreira Teixeira.

Additional information

Synopsis: This study demonstrates the nasal administration of nanoemulsions complexed with the plasmid encoding for IDUA protein (pIDUA) as an attempt to reach the brain aiming at mucopolysaccharidosis type I gene therapy.

Electronic supplementary material

ESM 1

(DOCX 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuh, R.S., Bidone, J., Poletto, E. et al. Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy. Pharm Res 35, 221 (2018). https://doi.org/10.1007/s11095-018-2503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2503-5

KEY WORDS

Navigation