Advertisement

Pharmaceutical Research

, 35:145 | Cite as

Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films

  • Patrick Laurén
  • Heli Paukkonen
  • Tiina Lipiäinen
  • Yujiao Dong
  • Timo Oksanen
  • Heikki Räikkönen
  • Henrik Ehlers
  • Päivi Laaksonen
  • Marjo Yliperttula
  • Timo Laaksonen
Research Paper

Abstract

Purpose

Bioadhesion is an important property of biological membranes, that can be utilized in pharmaceutical and biomedical applications. In this study, we have fabricated mucoadhesive drug releasing films with bio-based, non-toxic and biodegradable polymers that do not require chemical modifications.

Methods

Nanofibrillar cellulose and anionic type nanofibrillar cellulose were used as film forming materials with known mucoadhesive components mucin, pectin and chitosan as functional bioadhesion enhancers. Different polymer combinations were investigated to study the adhesiveness, solid state characteristics, film morphology, swelling, mechanical properties, drug release with the model compound metronidazole and in vitro cytotoxicity using TR146 cells to model buccal epithelium.

Results

SEM revealed lamellar structures within the films, which had a thickness ranging 40–240 μm depending on the film polymer composition. All bioadhesive components were non-toxic and showed high adhesiveness. Rapid drug release was observed, as 60–80% of the total amount of metronidazole was released in 30 min depending on the film formulation.

Conclusions

The liquid molding used was a straightforward and simple method to produce drug releasing highly mucoadhesive films, which could be utilized in treating local oral diseases, such as periodontitis. All materials used were natural biodegradable polymers from renewable sources, which are generally regarded as safe.

KEY WORDS

bioadhesion drug release mucoadhesion nanofibrillar cellulose TR146 

Abbreviations

NFC

Nanofibrillar cellulose

ANFC

Anionic type nanofibrillar cellulose

MZ

Metronidazole

Notes

Acknowledgements

The financial support from Academy of Finland (Grant No. 258114) is gratefully acknowledged. Orion Foundation of the Professor Pool, Finland is greatly acknowledged.

Supplementary material

11095_2018_2428_MOESM1_ESM.docx (503 kb)
ESM 1 (DOCX 502 kb)

References

  1. 1.
    Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C, Irwin CR. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release. 2000;67:357–68.CrossRefPubMedGoogle Scholar
  2. 2.
    Patel VF, Liu F, Brown MB. Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems. J Control Release. 2012;161:746–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Deng Y, Yang F, Cocco E, Song E, Zhang J, Cui J, et al. Improved i.p. drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci U S A. 2016;113:11453–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pettit DK, Gombotz WR. The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals. Trends Biotechnol. 1998;16:343–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, et al. Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun. 2014;5:4095.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    García MC, Aldana AA, Tártara LI, Alovero F, Strumia MC, Manzo RH, et al. Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr Polym. 2017;175:75–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Fonseca-Santos B, Satake CY, Calixto GMF, dos Santos AM, Chorilli M. Trans-resveratrol-loaded nonionic lamellar liquid-crystalline systems: structural, rheological, mechanical, textural, and bioadhesive characterization and evaluation of in vivo anti-inflammatory activity. Int J Nanomedicine. 2017;12:6883.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. 2015;132Google Scholar
  9. 9.
    Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, et al. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials (Basel). 2017;10:977.CrossRefGoogle Scholar
  10. 10.
    Märtson M, Viljanto J, Hurme T, Laippala P, Saukko P. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 1999;20:1989–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose. 2011;18:775–86.CrossRefGoogle Scholar
  12. 12.
    Miron-Mendoza M, Seemann J, Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices. Biomaterials. 2010;31:6425–35.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bhattacharya M, Malinen MM, Lauren P, Lou Y, Kuisma SW, Kanninen L, et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164:291–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8:2485–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7:1687–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm. 2012;82:308–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Kolakovic R, Peltonen L, Laukkanen A, Hellman M, Laaksonen P, Linder MB, et al. Evaluation of drug interactions with nanofibrillar cellulose. Eur J Pharm Biopharm. 2013;85:1238–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee K, Aitomäki Y, Berglund LA, Oksman K, Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Sci Technol. 2014;105:15–27.CrossRefGoogle Scholar
  19. 19.
    Meneguin AB, Cury BSF, dos Santos AM, Franco DF, Barud HS, da Silva Filho EC. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym. 2017;157:1013–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Laurén P, Somersalo P, Pitkänen I, Lou Y, Urtti A, Partanen J, et al. Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems. PLoS One. 2017;12:e0183487.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302–25.CrossRefGoogle Scholar
  22. 22.
    Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Svensson O, Arnebrant T. Mucin layers and multilayers—Physicochemical properties and applications. Curr Opin Colloid Interface Sci. 2010;15:395–405.CrossRefGoogle Scholar
  24. 24.
    Linden S, Sutton P, Karlsson N, Korolik V, McGuckin M. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–97.CrossRefPubMedGoogle Scholar
  25. 25.
    Lieleg O, Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011;21:543–51.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11:164–70.CrossRefGoogle Scholar
  27. 27.
    Thirawong N, Nunthanid J, Puttipipatkhachorn S, Sriamornsak P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer. Eur J Pharm Biopharm. 2007;67:132–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews. 2015;2:204–26.CrossRefGoogle Scholar
  29. 29.
    Builders PF, Kunle OO, Okpaku LC, Builders MI, Attama AA, Adikwu MU. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin. Eur J Pharm Biopharm. 2008;70:777–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Ashton L, Pudney PDA, Blanch EW, Yakubov GE. Understanding glycoprotein behaviours using Raman and Raman optical activity spectroscopies: Characterising the entanglement induced conformational changes in oligosaccharide chains of mucin. Adv Colloid Interface Sci. 2013;199-200:66–77.CrossRefPubMedGoogle Scholar
  31. 31.
    BeMiller JN. An introduction to pectins: structure and properties, in: An introduction to pectins: structure and properties. ACS Publications. 1986.Google Scholar
  32. 32.
    Huanbutta K, Cheewatanakornkool K, Terada K, Nunthanid J, Sriamornsak P. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets. Carbohydr Polym. 2013;97:26–33.CrossRefPubMedGoogle Scholar
  33. 33.
    El-Mahrouk GM, El-Gazayerly ON, Aboelwafa AA, Taha MS. Chitosan lactate wafer as a platform for the buccal delivery of tizanidine HCl: in vitro and in vivo performance. Int J Pharm. 2014;467:100–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Bruschi ML, Jones DS, Panzeri H, Gremião MP, De Freitas O, Lara EH. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci. 2007;96:2074–89.CrossRefPubMedGoogle Scholar
  35. 35.
    El-Kamel AH, Ashri LY, Alsarra IA. Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases. AAPS PharmSciTech. 2007;8:E184–94.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zykwinska AW, Ralet MC, Garnier CD, Thibault JF. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol. 2005;139:397–407.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Myllytie P, Salmi J, Laine J. The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResources. 2009;4:1647–62.Google Scholar
  38. 38.
    Cranston ED, Eita M, Johansson E, Netrval J, Salajková M, Arwin H, et al. Determination of Young’s modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. Biomacromolecules. 2011;12:961–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T. Cellulose nanopaper structures of high toughness. Biomacromolecules. 2008;9:1579–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB. Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep. 2017;7:11860.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym. 2011;84:579–83.CrossRefGoogle Scholar
  42. 42.
    Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer. 2008;49:1285–96.CrossRefGoogle Scholar
  43. 43.
    Orelma H, Filpponen I, Johansson L, Österberg M, Rojas OJ, Laine J. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases. 2012;7:61.CrossRefPubMedGoogle Scholar
  44. 44.
    Gum J. Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol. 1992;7:557.CrossRefPubMedGoogle Scholar
  45. 45.
    Sriamornsak P, Thirawong N, Weerapol Y, Nunthanid J, Sungthongjeen S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur J Pharm Biopharm. 2007;67:211–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci. 2013;50:69–77.CrossRefPubMedGoogle Scholar
  47. 47.
    Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M. Structure and interactions of plant cell-wall polysaccharides by two-and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry (NY). 2011;50:989–1000.CrossRefGoogle Scholar
  48. 48.
    Han C, Chen J, Wu X, Huang Y, Zhao Y. Detection of metronidazole and ronidazole from environmental Samples by surface enhanced Raman spectroscopy. Talanta. 2014;128:293–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem. 2000;68:327–32.CrossRefGoogle Scholar
  50. 50.
    Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces. 2014;6:6127–38.CrossRefPubMedGoogle Scholar
  51. 51.
    De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007;38:1133–47.CrossRefGoogle Scholar
  52. 52.
    Oh CM, Heng PWS, Chan LW. Influence of hydroxypropyl methylcellulose on metronidazole crystallinity in spray-congealed polyethylene glycol microparticles and its impact with various additives on Metronidazole release. AAPS PharmSciTech. 2015;16:1357–67.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zykwinska A, Thibault J, Ralet M. Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym. 2008;74:957–61.CrossRefGoogle Scholar
  54. 54.
    Cosgrove DJ. Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol. 2014;22:122–31.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gu J, Catchmark JM. The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose. 2013;20:1613–27.CrossRefGoogle Scholar
  56. 56.
    Jacobsen J, van Deurs B, Pedersen M, Rassing MR. TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int J Pharm. 1995;125:165–84.CrossRefGoogle Scholar
  57. 57.
    Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and β-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int J Pharm. 2000;194:155–67.CrossRefPubMedGoogle Scholar
  58. 58.
    Mahood J, Willson R. Cytotoxicity of metronidazole (Flagyl) and misonidazole (Ro-07-0582): enhancement by lactate. Br J Cancer. 1981;43:350–4.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Patrick Laurén
    • 1
  • Heli Paukkonen
    • 1
  • Tiina Lipiäinen
    • 2
  • Yujiao Dong
    • 3
  • Timo Oksanen
    • 1
  • Heikki Räikkönen
    • 2
  • Henrik Ehlers
    • 2
  • Päivi Laaksonen
    • 3
  • Marjo Yliperttula
    • 1
    • 4
  • Timo Laaksonen
    • 1
    • 5
  1. 1.Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  2. 2.Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Bioproducts and BiosystemsAalto UniversityEspooFinland
  4. 4.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
  5. 5.Laboratory of Chemistry and BioengineeringTampere University of TechnologyTampereFinland

Personalised recommendations