Advertisement

Pharmaceutical Research

, 35:171 | Cite as

Combined Used of Rheology and LF-NMR for the Characterization of PVP-Alginates Gels Containing Liposomes

  • Giulia Fanesi
  • Michela Abrami
  • Francesca Zecchin
  • Irina Giassi
  • Elena Dal Ferro
  • Anja Boisen
  • Gabriele Grassi
  • Paolo Bertoncin
  • Mario Grassi
  • Paolo Marizza
Research Paper
Part of the following topical collections:
  1. 6th World Conference on Physico-Chemical Methods in Drug Discovery and Development & 3rd World Conference on ADMET and DMPK

Abstract

Purpose

This paper is based on the characterization of the rheological and Low Field NMR (LF-NMR) properties of an interpenetrated hydrogel made up by poly(N-vinyl-2-pyrrolidone) and sodium alginate. The final aim is to use the hydrogel as a delivery matrix for liposomes, widely used tools in the drug delivery field.

Methods

Rheology, LF-NMR, TEM, cryo-TEM, confocal laser scanning microscopy and release test were employed to characterize the interpenetrated hydrogel. Different theoretical approaches such as Flory, Chui, Scherer and Schurz theories were used to interpret the experimental results.

Results

We found that the crosslinking mechanisms of the two polymers produced an anti-synergistic effect on the final mechanical properties of the interpenetrated hydrogel. Instead of creating a continuous network, alginate formed isolated, cross-linked, clusters embedded in a continuous network of poly(N-vinyl-2-pyrrolidone). Additionally, gel structure significantly influenced liposome delivery.

Conclusions

The rheological and LF-NMR characterization were confirmed and supported by the independent techniques TEM, cryo-TEM and release tests Thus, our findings reiterate the potentiality of both rheology and LF-NMR for the characterisation of soft materials such as interpenetrated polymeric networks.

Key words

Gel LF-NMR liposomes delivery rheology TEM 

Abbreviations

CFM

Confocal fluorescence

DDS

Drug delivery system

DLS

Dynamic Light Scattering

DMPC

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DPPC

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

FS

Frequency sweep test

GTA

Glutaraldehyde

IPN

Interpenetrated network

LF-NMR

Low Field Nuclear Magnetic Resonance

LSM

Laser Scanning Microscope

NBD PE

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl)

PVP

Poly(N-vinyl-2-pyrrolidone)

SS

Stress sweep test

TEM

Transmission electron microscopy

Notes

Acknowledgments and Disclosures

This work was supported by the Italian Ministry of Education (PRIN 2010–11 (20109PLMH2)), by Fondo di Ateneo FRA 2016 – Trieste University, BIOFLUO project, POR FESR 2014–2020, FVG, Italy. The authors would like to acknowledge the Danish National Research Foundation (DNRF122) and Villum Fonden (Grant No. 9301) for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN). Authors would like to acknowledge Prof. Leticia Hosta-Rigau and Dr. Maria Godoy Gallardo for the interesting discussions and the valuable inputs given to the investigation.

Supplementary material

11095_2018_2427_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)

References

  1. 1.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–36.CrossRefGoogle Scholar
  3. 3.
    Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:8–23.CrossRefGoogle Scholar
  4. 4.
    Dai W, Barbari T. Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly(vinyl alcohol). J Memb Sci. 1999;156:67–79.CrossRefGoogle Scholar
  5. 5.
    Peppas NA, Berner RE. Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials. 1980;1:158–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Kuijpers A, van Wachem P, van Luyn MJ, Engbers GH, Krijgsveld J, Zaat SA, et al. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release. 2000;67:323–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules. 1997;30:5255–64.CrossRefGoogle Scholar
  8. 8.
    Jeun JP, Jeon YK, Nho YC, Kang PH. Effects of gamma irradiation on the thermal and mechanical properties of chitosan/PVA nanofibrous mats. J Ind Eng Chem. 2009;15:430–3.CrossRefGoogle Scholar
  9. 9.
    Jabbari E, Nozari S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polym J. 2000;36:2685–92.CrossRefGoogle Scholar
  10. 10.
    Ajji Z, Othman I, Rosiak JM. Production of hydrogel wound dressings using gamma radiation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2005;229:375–80.CrossRefGoogle Scholar
  11. 11.
    Yoshii F, Darwis D, Mitomo H, Makuuchi K. Crosslinking of poly(ε-caprolactone) by radiation technique and its biodegradability. Radiat Phys Chem. 2000;57:417–20.CrossRefGoogle Scholar
  12. 12.
    Gorna K, Gogolewski S. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab. 2003;79:465–74.CrossRefGoogle Scholar
  13. 13.
    Decker C. Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun. 2002;23:1067–93.CrossRefGoogle Scholar
  14. 14.
    Almeida JF, Ferreira P, Lopes A, Gil MH. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int J Biol Macromol. 2011;49:948–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Lopérgolo LC, Lugão AB, Catalani LH. Direct UV photocrosslinking of poly(N-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer (Guildf). 2003;44:6217–22.CrossRefGoogle Scholar
  16. 16.
    Fechine GJM, Barros JAG, Catalani LH. Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer (Guildf). 2004;45:4705–9.CrossRefGoogle Scholar
  17. 17.
    Marizza P, Abrami M, Keller SS, Posocco P, Laurini E, Goswami K, et al. Synthesis and characterization of UV photocrosslinkable hydrogels with poly(Nvinyl-2-pyrrolidone): determination of the network mesh size distribution. Journal of Polymeric Materials and Polymeric Biomaterials. 2016;65:516–25.CrossRefGoogle Scholar
  18. 18.
    Bochicchio S, Dalmoro A, Barba AA, Grassi G, Lamberti G. Liposomes as siRNA delivery vectors. Curr Drug Metab. 2014;15:882–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Grassi M, Cavallaro G, Scirè S, Scaggiante B, Dapas B, Farra R, et al. Current strategies to improve the efficacy and the delivery of nucleic acid based drugs. Current signal transduction Therapy. 2010;5:92–120.CrossRefGoogle Scholar
  20. 20.
    Barba AA, Lamberti G, Sardo C, Dapas B, Abrami M, Grassi M, et al. Novel lipid and polymeric materials as delivery systems for nucleic acid based drugs. Curr Drug Metab. 2015;16:427–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, et al. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert opinion on Drug Delivery. 2017;14:797–810.CrossRefPubMedGoogle Scholar
  22. 22.
    Kuijpers AJ, Engbers GHM, Feijen J, De Smedt SC, Meyvis TKL, Demeester J, et al. Characterization of the network structure of Carbodiimide cross-linked gelatin gels. Macromolecules. 1999;32:3325–34.CrossRefGoogle Scholar
  23. 23.
    Lapasin R, Pricl S. Rheology of industrial polysaccharides. Blackie Academic and Professional, Chapman and Hall, Glasgow, UK: Theory and Applications; 1995.CrossRefGoogle Scholar
  24. 24.
    Draper NR, Smith H. Applied regression analysis. John Wiley & Sons, Inc., New York, 1966.Google Scholar
  25. 25.
    Meiboom S, Gill D. Modified SpinEcho method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.CrossRefGoogle Scholar
  26. 26.
    Abrami M, Ascenzioni F, Di Domenico EG, Maschio M, Ventura A, Confalonieri M, Di Gioia S, Conese M, Dapas B, Grassi G, Grassi M. A novel approach based on low field nuclear magnetic resonance for the detection of the pathological components of sputum in cystic fibrosis patients. Magn. Reson. Med. 2018 in press, 22 AUG 2017, DOI:  https://doi.org/10.1002/mrm.26876.
  27. 27.
    Chui M, Phillips R. Measurement of the porous microstructure of hydrogels by nuclear magnetic resonance. J Colloid Interface Sci. 1995;174:336–44.CrossRefGoogle Scholar
  28. 28.
    Flory PJ. Principles of polymer chemistry. Ithaca, USA: Cornell University, Press; 1953.Google Scholar
  29. 29.
    Scherer GW. Hydraulic radius and mesh size of gels. J Sol-Gel Sci Technol. 1994;1:285–91.CrossRefGoogle Scholar
  30. 30.
    Schurz J, Rheology of polymer solutions of the network type. Prog Polym Sci, 1991;16:1991, 1–53, 1.Google Scholar
  31. 31.
    Farra R, Dapas B, Pozzato G, Scaggiante B, Agostini F, Zennaro C, et al. Effects of E2F1-cyclin E1-E2 circuit down regulation in hepatocellular carcinoma cells. Dig Liver Dis. 2011;43:1006–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Grassi G, Schneider A, Engel S, Kandolf R, Kuhn A. Hammerhead ribozymes targeted against cyclin E and E2F1 cooperate to down-regulate coronary smooth muscle cell proliferation. Journal of Gene medicine. 2005;7:1223–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Grassi G, Marini JC. Ribozymes: structure, function and potential therapy for dominant genetic disorders. Ann Med. 1996;28:499–510.CrossRefPubMedGoogle Scholar
  34. 34.
    Grassi G, Dawson P, Kandolf R, Guarnieri G, Grassi M. Therapeutic potential of hammerhead ribozymes in the treatment of hyper-proliferative diseases. Curr Pharm Biotechnol. 2004;5:369–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Bochicchio S, Dapas B, Russo I, Ciacci C, Piazza O, De Smedt S, et al. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer. Int J Pharm. 2017;525:377–87.CrossRefPubMedGoogle Scholar
  36. 36.
    Farra R, Scaggiante B, Guerra C, Pozzato G, Grassi G, Zanconati F, et al. Dissecting the role of the elongation factor 1 a isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int J Pharm. 2017;525:367–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Grassi G, Scaggiante B, Dapas B, Farra R, Tonon F, Lamberti G, et al. Therapeutic potential of nucleic acid-based drugs in coronary hyper-proliferative vascular diseases. Curr Med Chem. 2013;20:3515–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giulia Fanesi
    • 1
  • Michela Abrami
    • 2
  • Francesca Zecchin
    • 2
  • Irina Giassi
    • 2
  • Elena Dal Ferro
    • 1
  • Anja Boisen
    • 1
  • Gabriele Grassi
    • 3
  • Paolo Bertoncin
    • 4
  • Mario Grassi
    • 2
  • Paolo Marizza
    • 1
  1. 1.Department of Micro- and NanotechnologyTechnical University of Denmark (DTU)Kongens LyngbyDenmark
  2. 2.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
  3. 3.Department of Life Sciences, Cattinara HospitalUniversity of TriesteTriesteItaly
  4. 4.Department of Life SciencesUniversity of TriesteTriesteItaly

Personalised recommendations