Skip to main content

Advertisement

Log in

Novel Formulation Strategy to Improve the Feasibility of Amifostine Administration

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Amifostine (AMF), a radioprotectant, is FDA-approved for intravenous administration in cancer patients receiving radiation therapy (XRT). Unfortunately, it remains clinically underutilized due to adverse side effects. The purpose of this study is to define the pharmacokinetic profile of an oral AMF formulation potentially capable of reducing side effects and increasing clinical feasibility.

Methods

Calvarial osteoblasts were radiated under three conditions: no drug, AMF, and WR-1065 (active metabolite). Osteogenic potential of cells was measured using alkaline phosphatase staining. Next, rats were given AMF intravenously or directly into the jejunum, and pharmacokinetic profiles were evaluated. Finally, rats were given AMF orally or subcutaneously, and blood samples were analyzed for pharmacokinetics.

Results

WR-1065 preserved osteogenic potential of calvarial osteoblasts after XRT to a greater degree than AMF. Direct jejunal AMF administration incurred a systemic bioavailability of 61.5%. Subcutaneously administrated AMF yielded higher systemic levels, a more rapid peak exposure (0.438 vs. 0.875 h), and greater total systemic exposure of WR-1065 (116,756 vs. 16,874 ng*hr/ml) compared to orally administered AMF.

Conclusions

Orally administered AMF achieves a similar systemic bioavailability and decreased peak plasma level of WR-1065 compared to intravenously administered AMF, suggesting oral AMF formulations maintain radioprotective efficacy without causing onerous side effects, and are clinically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

%F :

Systemic bioavailability

ALP:

Alkaline Phosphatase

alpha-MEM:

Alpha-modified minimal essential medium

AMF:

Amifostine

AUC :

Areas under curve

Cmax :

Maximum concentration

EC-AMF :

Enteric-coated AMF

HNC :

Head and neck cancer

IV :

Intravenous

LC-MS:

Liquid chromatography-mass spectrometry

MC3T3 cells :

Calvarial osteoblasts

MS:

Mass spectrometry

ODM :

Osteogenic differentiation medium

PBS:

Phosphate Buffered Saline

PK:

Pharmacokinetic

PO:

Oral

SC :

Subcutaneous

UPLC:

Ultra performance liquid chromatography

WR-1065:

Active Amifostine metabolite

WR-1065-EMI :

WR-1065 N-ethylmaleimide

WR-1065-MMI :

Modified WR-1065 N-methymaleimide

XRT:

Radiation therapy

References

  1. Cohen EM, Schapira L. Head and Neck Cancer: Statistics. Cancer.net.; 2017 September. Available from: http://www.cancer.net/cancer-types/head-and-neck-cancer/statistics

  2. Moreau MF, Gallois Y, Baslé MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials. 2000;21(4):369–76.

    Article  CAS  PubMed  Google Scholar 

  3. Marx RE. Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg. 1983;41(5):283–8.

    Article  CAS  PubMed  Google Scholar 

  4. Marx RE, Johnson RP. Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol. 1987;64(4):379–90.

    Article  CAS  PubMed  Google Scholar 

  5. Monson LA, Nelson NS, Donneys A, Farberg AS, Tchanque-Fossuo CN, Deshpande SS, et al. Amifostine treatment mitigates the damaging effects of radiation on distraction osteogenesis in the murine mandible. Ann Plast Surg. 2016;77(2):164–8.

    Article  CAS  PubMed  Google Scholar 

  6. Donneys A, Nelson NS, Page EE, Deshpande SS, Felice PA, Tchanque-Fossuo CN, et al. Targeting angiogenesis as a therapeutic means to reinforce osteocyte survival and prevent nonunions in the aftermath of radiotherapy. Head Neck. 2015;37(9):1261–7.

    Article  PubMed  Google Scholar 

  7. Wu HY, Hu ZH, Jin T. Sustained-release microspheres of amifostine for improved radio-protection, patient compliance, and reduced side effects. Drug Deliv. 2016;23(9):3704–11.

    Article  CAS  PubMed  Google Scholar 

  8. Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective agents: strategies and translational advances. Med Res Rev. 2016;36(3):461–93.

    Article  PubMed  Google Scholar 

  9. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-Spectrum Radioprotector. Oncologist. 2007;12(6):738–47.

    Article  CAS  PubMed  Google Scholar 

  10. Felice PA, Gong B, Ahsan S, Deshpande SS, Nelson NS, Donneys A, et al. Raman spectroscopy delineates radiation-induced injury and partial rescue by amifostine in bone: a murine mandibular model. J Bone Miner Metab. 2015;33(3):279–84.

    Article  CAS  PubMed  Google Scholar 

  11. Tchanque-Fossuo CN, Donneys A, Razdolsky ER, Monson LA, Farberg AS, Deshpande SS, et al. Quantitative histologic evidence of Amifostine-induced Cytoprotection in an irradiated murine model of mandibular distraction osteogenesis. Plast Reconstr Surg. 2012;130(6):1199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donneys A, Tchanque-Fossuo CN, Blough JT, Nelson NS, Deshpande SS, Buchman SR. Amifostine preserves osteocyte number and osteoid formation in fracture healing following radiotherapy. J Oral Maxillofac Surg. 2014;72(3):559–66.

    Article  PubMed  Google Scholar 

  13. Page EE, Deshpande SS, Nelson NS, Felice PA, Donneys A, Rodriguez JJ, et al. Prophylactic administration of Amifostine protects vessel thickness in the setting of irradiated bone. J Plast Reconstr Aesthet Surg. 2015;68(1):98–103.

    Article  PubMed  Google Scholar 

  14. Sarhaddi D, Tchanque-Fossuo CN, Poushanchi B, Donneys A, Deshpande SS, Weiss DM, et al. Amifostine protects vascularity and improves Union in a Model of irradiated mandibular fracture healing. Plast Reconstr Surg. 2013;132(6):1542–9.

    Article  CAS  PubMed  Google Scholar 

  15. Polyatskaya Y, Nelson NS, Rodriguez JJ, Zheutlin AR, Deshpande SS, Felice PA, et al. Prophylactic amifostine prevents a pathologic vascular response in a murine model of expander-based breast reconstruction. J Plast Reconstr Aesthet Surg. 2016;69(2):234–40.

    Article  CAS  PubMed  Google Scholar 

  16. Tchanque-Fossuo CN, Gong B, Poushanchi B, Donneys A, Sarhaddi D, Gallagher KK, et al. Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible. Bone. 2013;52(2):712–7.

    Article  CAS  PubMed  Google Scholar 

  17. Felice PA, Ahsan S, Perosky JE, Deshpande SS, Nelson NS, Donneys A, et al. Prophylactic Amifostine preserves the biomechanical properties of irradiated bone in the murine mandible. Plast Reconstr Surg. 2014;133(3):314e–21e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tchanque-Fossuo CN, Donneys A, Deshpande SS, Nelson NS, Boguslawski MJ, Gallagher KK, et al. Amifostine remediates the degenerative effects of radiation on the mineralization capacity of the murine mandible. Plast Reconstr Surg. 2012;129(4):646e–55e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. US Food and Drug Administration. Ethyol® (amifostine) for injection. Washington, D.C.

  20. Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ryan SV, Carrithers SL, Parkinson SJ, Shurk C, Nuss C, Pooler PM. Hypotensive mechanisms of amifostine. J Clin Pharmacol. 1996;36(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  22. Gula A, Ren L, Zhou Z, Lu D, Wang S. Design and evaluation of biodegradable enteric microcapsules of amifostine for oral delivery. Int J Pharm. 2013;453(2):441–7.

    Article  Google Scholar 

  23. Oppenheimer AJ, Rhee ST, Goldstein SA, Buchman SR. Force-induced craniosynostosis in the murine sagittal suture. Plast Reconstr Surg. 2009;124(6):1840–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL. Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res. 2009;11(3):312–24.

    Article  Google Scholar 

  25. Calabro-Jones PM, Aquilera JA, Ward JF, Smoluk GD, Fahey RC. Uptake of WR-2721 derivatives by cells in culture: identification of the transported form of the drug. Cancer Res. 1988;48:3634–40.

    CAS  PubMed  Google Scholar 

  26. Akbulut S, Sevmis S, Karakayali H, Bayraktar N, Unlukaplan M, Oksuz E, et al. Amifostine enhances the antioxidants and hepatoprotective effects of UW and HTK preservation solutions. World J Gastroenterol. 2014;20(34):12292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santini V, Giles FJ. The potential of amifostine: from cytoprotectant to therapeutic agent. Haematologica. 1999;84(11):1035–42.

    CAS  PubMed  Google Scholar 

  28. Verstappen CC, Postma TJ, Geldof AA, Heimans JJ. Amifostine protects against chemotherapy-induced neurotoxicity: an in vitro investigation. Anticancer Res. 2004;24(4):2337–41.

    CAS  PubMed  Google Scholar 

  29. Jellema AP, Slotman BJ, Muller MJ, Leemans CR, Smeele EL, Hoekman K, et al. Radiotherapy alone, versus radiotherapy with amifostine 3 times weekly, versus radiotherapy with amifostine 5 times weekly. Cancer. 2006;107(3):544–53.

    Article  CAS  PubMed  Google Scholar 

  30. Akbulut S, Elbe H, Eric C, Dogan Z, Toprak G, Otan E, et al. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J Gastroenterol. 2014;20(29):10158–65.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mandal TK, Bostanian LA, Graves RA, Chapman SR, Womack I. Development of biodegradable microcapsules as carrier for oral controlled delivery of amifostine. Drug Dev Ind Pharm. 2002;28(3):339–44.

    Article  CAS  PubMed  Google Scholar 

  32. Pamujula S, Kishore V, Rider B, Fermin CD, Graves RA, Agrawal KC, et al Radioprotection in mice following oral delivery of amifostine nanoparticles. Int J Radiat Biol. 2005;81(3):251–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was support by R01 CA 125187 awarded to Steven R. Buchman, MD by the Nation Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Buchman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganathan, K., Simon, E., Lynn, J. et al. Novel Formulation Strategy to Improve the Feasibility of Amifostine Administration. Pharm Res 35, 99 (2018). https://doi.org/10.1007/s11095-018-2386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2386-5

Key words

Navigation