Skip to main content
Log in

Sweetening Inhaled Antibiotic Treatment for Eradication of Chronic Respiratory Biofilm Infection

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The failure of chronic therapy with antibiotics to clear persistent respiratory infection is the key morbidity and mortality factor for patients with chronic lung diseases, primarily due to the presence of biofilm in the lungs. It is hypothesised that carbon sources, such as mannitol, could stimulate the metabolic activity of persister cells within biofilms and restore their susceptibility to antibiotics. The aims of the current study are to: (1) establish a representative in vitro model of Pseudomonas aeruginosa biofilm lung infection, and (2) investigate the effects of nebulised mannitol on antibiotic efficacy, focusing on ciprofloxacin, in the eradication of biofilm.

Method

Air interface biofilm was cultured onto Snapwell inserts incorporated into a modified pharmacopeia deposition apparatus, the Anderson Cascade Impactor (ACI). Three different formulations including mannitol only, ciprofloxacin only and combined ciprofloxacin and mannitol were nebulised onto the P. aeruginosa biofilm using the modified ACI. Antibacterial effectiveness was evaluated using colony-forming units counts, biofilm penetration and scanning electron microscopy.

Results

Nebulised mannitol promotes the dispersion of bacteria from the biofilm and demonstrated a synergistic enhancement of the antibacterial efficacy of ciprofloxacin compared to delivery of antibiotic alone.

Conclusions

The combination of ciprofloxacin and mannitol may provide an important new strategy to improve antibiotic therapy for the treatment of chronic lung infections. Furthermore, the development of a representative lung model of bacterial biofilm could potentially be used as a platform for future new antimicrobial pre-clinical screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACI:

Anderson cascade impactor

ATCC:

American type cell culture collection

BE:

Bronchiectasis

CAMHB:

Cation adjusted Mueller-Hinton broth

Cipro:

Ciprofloxacin only

Cipro-man:

Ciprofloxacin and mannitol

CDC:

Centers for disease control

CF:

Cystic fibrosis

CFU:

Colony-forming unit count

COPD:

Chronic obstructive pulmonary disease

CV:

Crystal violet

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethyl sulfoxide

EPS:

Extracellular polymeric substances

EVOM:

Epithelial voltohmmeter

f 1 :

Difference factor

f 2 :

Similarity factor

FBS:

Fetal bovine serum

FPF:

Fine particle fraction

GSD:

Geometric standard deviation

HBSS:

Hank’s balanced salt solution

HPLC:

High performance liquid chromatography

LB:

Luria-Bertani

MMAD:

Mass median aerodynamic diameter

P. aeruginosa :

Pseudomonas aeruginosa

PBS:

Phosphate buffered saline

PCF:

Primary ciliary dyskinesia

RID:

Refractive index detector

RTIs:

Respiratory tract infections

SEM:

Scanning electron microscope

TEER:

Transepithelial electrical resistance

USP:

United States Pharmacopoeia

References

  1. Organization WH. WHO: The top 10 causes of death. 2014 [Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.

  2. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, Yoon SS, et al. Anaerobic metabolism and quorum sensing by Pseudomonas Aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev. 2002;54(11):1425–43.

    Article  CAS  PubMed  Google Scholar 

  3. McShane PJ, Naureckas ET, Tino G, Strek ME. Non–cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2013;188(6):647–56.

    Article  PubMed  Google Scholar 

  4. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–65.

    Article  CAS  PubMed  Google Scholar 

  5. Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, et al. Pseudomonas Aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009;44(6):547–58.

    Article  PubMed  Google Scholar 

  6. Clancy J, Dupont L, Konstan M, Billings J, Fustik S, Goss C, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas Aeruginosa infection. Thorax. 2013; 68(9): 818-825. https://doi.org/10.1136/thoraxjnl-2012-202230.

  7. Geller DE, Flume PA, Staab D, Fischer R, Loutit JS, Conrad DJ. Levofloxacin inhalation solution (MP-376) in patients with cystic fibrosis with Pseudomonas Aeruginosa. Am J Respir Crit Care Med. 2011;183(11):1510–6.

    Article  CAS  PubMed  Google Scholar 

  8. Serisier DJ, Bilton D, De Soyza A, Thompson PJ, Kolbe J, Greville HW, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax. 2013;68(9):812–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway pseudomonas infections of cystic fibrosis patients. J Clin Invest. 2002;109(3):317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sousa AM, Pereira MO. Pseudomonas Aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens. 2014;3(3):680–703.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lebeaux D, Ghigo J-M, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011;473(7346):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barraud N, Buson A, Jarolimek W, Rice SA. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas Aeruginosa biofilms. PLoS One. 2013;8(12):e84220.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013;2(2):288–356.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Santopolo L, Marchi E, Frediani L, Decorosi F, Viti C, Giovannetti L. A novel approach combining the Calgary biofilm device and phenotype MicroArray for the characterization of the chemical sensitivity of bacterial biofilms. Biofouling. 2012;28(9):1023–32.

    Article  CAS  PubMed  Google Scholar 

  16. Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83(2):89–105.

    Article  CAS  PubMed  Google Scholar 

  17. Chang Y-W, Fragkopoulos AA, Marquez SM, Kim HD, Angelini TE, Fernández-Nieves A. Biofilm formation in geometries with different surface curvature and oxygen availability. New J Phys. 2015;17(3):033017.

    Article  Google Scholar 

  18. Grainger CI, Greenwell LL, Martin GP, Forbes B. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Biopharm. 2009;71(2):318–24.

    Article  CAS  PubMed  Google Scholar 

  19. Ong HX, Traini D, Loo C-Y, Sarkissian L, Lauretani G, Scalia S, et al. Is the cellular uptake of respiratory aerosols delivered from different devices equivalent? Eur J Pharm Biopharm. 2015;93:320–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ong HX, Traini D, Cipolla D, Gonda I, Bebawy M, Agus H, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res. 2012;29(12):3335–46.

    Article  CAS  PubMed  Google Scholar 

  21. Abdelrahim ME. Aerodynamic characteristics of nebulized terbutaline sulphate using the Andersen Cascade impactor compared to the next generation impactor. Pharm Dev Technol. 2011;16(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  22. Haghi M, Traini D, Young P. In Vitro Cell Integrated Impactor Deposition Methodology for the Study of Aerodynamically Relevant Size Fractions from Commercial Pressurised Metered Dose Inhalers. Pharm Res. 2014;31(7):1779-87. https://doi.org/10.1007/s11095-013-1282-2.

  23. Ong HX, Traini D, Bebawy M, Young PM. Epithelial profiling of antibiotic controlled release respiratory formulations. Pharm Res. 2011;28(9):2327–38.

    Article  CAS  PubMed  Google Scholar 

  24. Ong HX, Traini D, Salama R, Anderson SD, Daviskas E, Young PM. The effects of mannitol on the transport of ciprofloxacin across respiratory epithelia. Mol Pharm. 2013;10(8):2915–24.

    Article  CAS  PubMed  Google Scholar 

  25. Ong HX, Traini D, Ballerin G, Morgan L, Buddle L, Scalia S, et al. Combined inhaled salbutamol and mannitol therapy for mucus hyper-secretion in pulmonary diseases. AAPS J. 2014;16(2):269–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chua SL, Hultqvist LD, Yuan M, Rybtke M, Nielsen TE, Givskov M, et al. In vitro and in vivo generation and characterization of Pseudomonas Aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc. 2015;10(8):1165–80.

    Article  CAS  PubMed  Google Scholar 

  27. Administration FaD. Guidance for industry; dissolution testing of immediate release solid oral dosage forms. extended release solid oral dosage forms: development, evaluation and application of in vitro/in vivo correlations 1997.

  28. Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20(6):64–74.

    Google Scholar 

  29. Administration FaD. Guidance for industry; bioavailability and bioequivalence studies for orally administered drug products—general considerations 2000.

  30. Carvalho TC, Peters JI, Williams RO. Influence of particle size on regional lung deposition–what evidence is there? Int J Pharm. 2011;406:1):1–10.

    Article  PubMed  Google Scholar 

  31. O'Callaghan C, Barry PW. The science of nebulised drug delivery. Thorax. 1997;52(Suppl 2):S31.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hess D, Fisher D, Williams P, Pooler S, Kacmarek RM. Medication nebulizer performance: effects of diluent volume, nebulizer flow, and nebulizer brand. Chest. 1996;110(2):498–505.

    Article  CAS  PubMed  Google Scholar 

  33. Clark AR. The use of laser diffraction for the evaluation of the aerosol clouds generated by medical nebulizers. Int J Pharm. 1995;115(1):69–78.

    Article  Google Scholar 

  34. Ziegler J, Wachtel H. Comparison of cascade impaction and laser diffraction for particle size distribution measurements. J Aerosol Med. 2005;18(3):311–24.

    Article  PubMed  Google Scholar 

  35. Ong HX, Traini D, Bebawy M, Young PM. Ciprofloxacin is actively transported across bronchial lung epithelial cells using a Calu-3 air interface cell model. Antimicrob Agents Chemother. 2013;57(6):2535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016;8(1):6.

    Article  PubMed Central  Google Scholar 

  37. Willumsen NJ, Davis CW, Boucher RC. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. J Clin Investig. 1994;94(2):779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, et al. The extracellular matrix protects pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 2013;15(10):2865–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.

    Article  CAS  PubMed  Google Scholar 

  40. Cotton LA, Graham RJ, Lee RJ. The role of alginate in P. aeruginosa PAO1 biofilm structural resistance to gentamicin and ciprofloxacin. J Exp Microbiol Immunol. 2009;13:58–62.

    Google Scholar 

  41. Suci P, Mittelman M, Yu F, Geesey G. Investigation of ciprofloxacin penetration into Pseudomonas Aeruginosa biofilms. Antimicrob Agents Chemother. 1994;38(9):2125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334(6058):982–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9(1):e1003144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bucior I, Abbott J, Song Y, Matthay MA, Engel JN. Sugar administration is an effective adjunctive therapy in the treatment of Pseudomonas Aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 2013;305(5):L352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xin Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loo, CY., Lee, WH., Lauretani, G. et al. Sweetening Inhaled Antibiotic Treatment for Eradication of Chronic Respiratory Biofilm Infection. Pharm Res 35, 50 (2018). https://doi.org/10.1007/s11095-018-2350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2350-4

KEY WORDS

Navigation