Advertisement

Pharmaceutical Research

, 35:51 | Cite as

Exploring Molecular Speciation and Crystallization Mechanism of Amorphous 2-Phenylamino Nicotinic Acid

  • Arjun Kalra
  • Joseph W. Lubach
  • Eric J. Munson
  • Tonglei LiEmail author
Research Paper Theme: Formulation and Manufacturing of Solid Dosage Forms
Part of the following topical collections:
  1. Formulation and Manufacturing of Solid Dosage Forms

Abstract

Purpose

Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular –COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state.

Methods

Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated.

Results

The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates – either as hydrogen-bonded neutral molecules or as zwitterions – as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed.

Conclusions

The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.

Key words

amorphous crystallization intermolecular interactions molecular species nucleation phase transition solid-state NMR spectroscopy 

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

We thank CPD (Center for Pharmaceutical Development) and CPPR (Center for Pharmaceutical Processing Research) for providing partial financial support for this study. The authors declare the following competing financial interest(s): E.J.M. is a partial owner of Kansas Analytical Services, a company that provides solid-state NMR services to the pharmaceutical industry. The results presented here are from academic work at the University of Kentucky, and no data from Kansas Analytical Services are presented.

Supplementary material

11095_2018_2346_MOESM1_ESM.docx (198 kb)
ESM 1 (DOCX 198 kb)

References

  1. 1.
    Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61:1571–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95:2692–705.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen J, Sarma B, Evans JM, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des. 2011;11:887–95.CrossRefGoogle Scholar
  4. 4.
    Davey RJ, Schroeder SL, ter Horst JH. Nucleation of organic crystals--a molecular perspective. Angew Chem Int Ed Engl. 2013;52:2166–79.CrossRefPubMedGoogle Scholar
  5. 5.
    Davey RJ, Blagden N, Righini S, Alison H, Quayle MJ, Fuller S. Crystal polymorphism as a probe for molecular self-assembly during nucleation from solutions 2,6-dihydroxybenzoic acid. Cryst Growth Des. 2001;1:59–65.CrossRefGoogle Scholar
  6. 6.
    Davey RJ, Dent G, Mughal RK, Parveen S. Concerning the relationship between structural and growth synthons in crystal nucleation- solution and crystal chemistry of carboxylic acids as revealed through ir spectroscopy. Cryst Growth Des. 2006;6:1788–96.CrossRefGoogle Scholar
  7. 7.
    Apperley DC, Forster AH, Fournier R, Harris RK, Hodgkinson P, Lancaster RW, et al. Characterisation of indomethacin and nifedipine using variable-temperature solid-state nmr. Magn Reson Chem. 2005;43:881–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Taylor LS, Zografi G. Spectroscopic characterization of interactions between pvp and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Yaun X, Xiang T-X, Anderso BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl acetate) studied using 13c solid-state nmr. Mol Pharm. 2015;12:4518–28.CrossRefGoogle Scholar
  10. 10.
    Andronis V, Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non-Cryst Solids. 2000;271:236–48.CrossRefGoogle Scholar
  11. 11.
    Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83:1700–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Kalra A, Luner P, Taylor LS, Byrn SR, Li T. Gaining thermodynamic insight from distinct glass formation kinetics of structurally similar organic compounds. J Pharm Sci 2017.Google Scholar
  13. 13.
    Kalra A, Tishmack P, Lubach JW, Munson EJ, Taylor LS, Byrn SR, et al. Impact of supramolecular aggregation on the crystallization kinetics of organic compounds from the supercooled liquid state. Mol Pharm. 2017;14:2126–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Long SH, Parkin S, Siegler MA, Cammers A, Li TL. Polymorphism and phase behaviors of 2-(phenylamino)nicotinic acid. Cryst Growth Des. 2008;8:4006–13.CrossRefGoogle Scholar
  15. 15.
    Dixon WT. Spinning-sideband-free and spinning-sideband-only nmr spectra in spinning samples. J Chem Phys. 1982;77:1800.CrossRefGoogle Scholar
  16. 16.
    Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson. 2000;142:97–101.CrossRefPubMedGoogle Scholar
  17. 17.
    Metz G, Wu X, Smith SO. Ramped-amplitude cross polarization in magic-angle-spinning nmr. J Magn Res. 1994;110:219–27.CrossRefGoogle Scholar
  18. 18.
    Song Z, Antzutkin ON, Feng X, Levitt MH. Sideband suppression in magic-angle-spinning nmr by a sequence of 5 pi pulses. Solid State Nucl Magn Reson. 1993;2:143–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J Chem Phys. 1996;105:11024–31.CrossRefGoogle Scholar
  20. 20.
    Ditchfie R. Self-consistent perturbation-theory of diamagnetism .1. Gauge-invariant lcao method for nmr chemical-shifts. Mol Phys. 1974;27:789–807.CrossRefGoogle Scholar
  21. 21.
    Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for nmr chemical-shift calculations. J Am Chem Soc. 1990;112:8251–60.CrossRefGoogle Scholar
  22. 22.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys. 1996;104:5497–509.CrossRefGoogle Scholar
  23. 23.
    Casabianca LB, De Dios AC. Ab initio calculations of nmr chemical shifts. J Chem Phys. 2008;128:10.CrossRefGoogle Scholar
  24. 24.
    Bernstein J. Polymorphism in molecular crystals. New York: Oxford University Press. 2002;Google Scholar
  25. 25.
    Sundaraganesan N, Ilakiamani S, Saleem H, Wojciechowski PM, Michalska D. Ft-raman and ft-ir spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61:2995–3001.CrossRefPubMedGoogle Scholar
  26. 26.
    Li ZJ, Abramov Y, Bordner J, Leonard J, Medek A, Trask AV. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15n nmr spectroscopy. J Am Chem Soc. 2006;128:8199–210.CrossRefPubMedGoogle Scholar
  27. 27.
    Song Y, Yang X, Chen X, Nie H, Byrn SR, Lubach JW. Investigation of drug–excipient interactions in lapatinib amorphous solid dispersions using solid-state nmr spectroscopy. Mol Pharm. 2015;12:857–66.CrossRefPubMedGoogle Scholar
  28. 28.
    Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11:2662–79.CrossRefGoogle Scholar
  29. 29.
    Milletti F, Storchi L, Sforna G, Cruciani G. New and original pka prediction method using grid molecular interaction fields. J Chem Inf Model. 2007;47:2172–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Kilburn D, Townrow S, Meunier V, Richardson R, Alam A, Ubbink J. Organization and mobility of water in amorphous and crystalline trehalose. Nat Mater. 2006;5:632–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Bates S, Zografi G, Engers D, Morris K, Crowley K, Newman A. Analysis of amorphous and nanocrystalline solids from their x-ray diffraction patterns. Pharm Res. 2006;23:2333–49.CrossRefPubMedGoogle Scholar
  32. 32.
    Li T, Zhou P, Mattei A. Electronic origin of pyridinyl n as a better hydrogen-bonding acceptor than carbonyl o. CrystEngComm. 2011;13:6356–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arjun Kalra
    • 1
  • Joseph W. Lubach
    • 2
  • Eric J. Munson
    • 3
  • Tonglei Li
    • 1
    Email author
  1. 1.Department of Industrial & Physical Pharmacy, College of PharmacyPurdue UniversityIndianaUSA
  2. 2.Genentech, Inc.CaliforniaUSA
  3. 3.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations