Advertisement

Pharmaceutical Research

, 35:70 | Cite as

Effect of Permeation Enhancers on the Buccal Permeability of Nicotine: Ex vivo Transport Studies Complemented by MALDI MS Imaging

  • Eva Marxen
  • Liang Jin
  • Jette Jacobsen
  • Christian Janfelt
  • Birgitte Hyrup
  • Joseph A. Nicolazzo
Research Paper

Abstract

Purpose

The purpose of this study was to assess the effect of several chemical permeation enhancers on the buccal permeability of nicotine and to image the spatial distribution of nicotine in buccal mucosa with and without buccal permeation enhancers.

Methods

The impact of sodium taurodeoxycholate (STDC), sodium dodecyl sulphate (SDS), dimethyl sulfoxide (DMSO) and Azone® on the permeability of [3H]-nicotine and [14C]-mannitol (a paracellular marker) across porcine buccal mucosa was studied ex vivo in modified Ussing chambers. The distribution of nicotine, mannitol and permeation enhancers was imaged using using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI).

Results

Despite STDC significantly increasing permeability of [14C]-mannitol, no enhancing effect was seen on [3H]-nicotine permeability with any of the permeation enhancers. Rather, SDS and DMSO retarded nicotine permeability, likely due to nicotine being retained in the donor compartment. The permeability results were complemented by the spatial distribution of nicotine and mannitol determined with MALDI MSI.

Conclusions

The buccal permeability of nicotine was affected in an enhancer specific manner, suggesting that nicotine primarily diffuses via the transcellular pathway. MALDI MSI was shown to complement ex vivo permeability studies and to be a useful qualitative tool for visualizing drug and penetration enhancer distribution in buccal mucosa.

KEY WORDS

buccal mucosa mass spectrometry imaging nicotine permeability permeation enhancer 

Abbreviations

AZ

Azone®

CMC

Critical micelle concentration

DMSO

Dimethyl sulfoxide

ER

Enhancement ratio

HE

Hematoxylin and eosin

KBR

Krebs-Ringer bicarbonate buffer

MALDI

Matrix-assisted laser desorption ionization

Papp

Apparent permeability coefficient

SD

Standard deviation

SDS

Sodium dodecyl sulfate

STDC

Sodium taurodeoxycholate

Notes

Acknowledgments and Disclosures

The Nicotine Science Center, Fertin Pharma A/S, Vejle, Denmark is thankfully acknowledged for their funding of this project. Assistant Professor Andrew Richard Williams is acknowledged for kind donation of porcine cheeks from experimental control pigs for the MALDI studies. The authors gratefully acknowledge the Oticon Foundation, the Lundbeck Foundation and the Graduate School of Health and Medical Sciences for grants enabling the travel to Melbourne, Australia where the permeability studies were performed. Support for the MALDI imaging from the Carlsberg Foundation and The Danish Council for Independent Research | Medical Sciences (grant no. DFF – 4002-00391) is gratefully acknowledged.

Supplementary material

11095_2017_2332_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2533 kb)

References

  1. 1.
    Hu L, Silva SM, Damaj BB, Martin R, Michniak-Kohn BB. Transdermal and transbuccal drug delivery systems: Enhancement using iontophoretic and chemical approaches. Int J Pharm. 2011;421(1):53–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers: How do they really work? J Control Release. 2005;105(1–2):1–15.CrossRefPubMedGoogle Scholar
  3. 3.
    Smart JD. Buccal drug delivery. Expert Opin Drug Deliv. 2005;2(3):507–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker, Inc.; 1996. p. 1–26.Google Scholar
  5. 5.
    Squier CA. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res. 1973;43(1):160–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Squier CA, Hall BK. The permeability of mammalian nonkeratinized oral epithelia to horseradish peroxidase applied in vivo and in vitro. Arch Oral Biol. 1984;29(1):45–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Oh DH, Chun KH, Jeon SO, Kang JW, Lee S. Enhanced transbuccal salmon calcitonin (sCT) delivery: Effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation. Eur J Pharm Biopharm. 2011;79(2):357–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm. 2010;36(3):254–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Jin L, Boyd BJ, White PJ, Pennington MW, Norton RS, Nicolazzo JA. Buccal mucosal delivery of a potent peptide leads to therapeutically-relevant plasma concentrations for the treatment of autoimmune diseases. J Control Release. 2015;199:37–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Shidhaye SS, Thakkar PV, Dand NM, Kadam VJ. Buccal drug delivery of pravastatin sodium. AAPS PharmSciTech. 2010;11(1):416–24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jin L, Boyd BJ, Larson IC, Pennington MW, Norton RS, Nicolazzo JA. Enabling noninvasive systemic delivery of the Kv1.3-blocking peptide HsTX1[R14A] via the buccal bucosa. J Pharm Sci. 2016;105(7):2173–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci. 2004;93(2):431–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Prasanth VV, Puratchikody A, Mathew ST, Ashok KB. Effect of permeation enhancers in the mucoadhesive buccal patches of salbutamol sulphate for unidirectional buccal drug delivery. Res Pharm Sci. 2014;9(4):259–68.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Brockbank KGM, Taylor MJ. Tissue preservation. In: Baust JG, Baust JM, editors. Advances in biopreservation. Boca Raton: Taylor & Francis Group; 2006. p. 157–96.CrossRefGoogle Scholar
  15. 15.
    Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: The molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111(35):10453–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Nicolazzo JA, Reed BL, Finnin BC. Enhanced buccal mucosal retention and reduced buccal permeability of estradiol in the presence of padimate O and Azone: A mechanistic study. J Pharm Sci. 2005;94(4):873–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Meng-Lund E, Jacobsen J, Jin L, Janfelt C, Holm R, Mullertz A, et al. Azone(R) decreases the buccal mucosal permeation of diazepam in a concentration-dependent manner via a reservoir effect. J Pharm Sci. 2014;103(4):1133–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Nicolazzo JA, Reed BL, Finnin BC. Modification of buccal drug delivery following pretreatment with skin penetration enhancers. J Pharm Sci. 2004;93(8):2054–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Rompp A, Spengler B. Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol. 2013;139(6):759–83.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Enthaler B, Pruns JK, Wessel S, Rapp C, Fischer M, Wittern KP. Improved sample preparation for MALDI-MSI of endogenous compounds in skin tissue sections and mapping of exogenous active compounds subsequent to ex-vivo skin penetration. Anal Bioanal Chem. 2012;402(3):1159–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Nicolazzo JA, Reed BL, Finnin BC. The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa. J Pharm Sci. 2003;92(12):2399–410.CrossRefPubMedGoogle Scholar
  22. 22.
    Marxen E, Axelsen MC, Pedersen AM, Jacobsen J. Effect of cryoprotectants for maintaining drug permeability barriers in porcine buccal mucosa. Int J Pharm. 2016;511(1):599–605.CrossRefPubMedGoogle Scholar
  23. 23.
    Schramm T, Hester A, Klinkert I, Both JP, Heeren RM, Brunelle A, et al. imzML - A common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome. 2012;75(16):5106–10.CrossRefGoogle Scholar
  24. 24.
    Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: An open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom. 2013;24(5):718–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Janfelt C, Wellner N, Leger PL, Kokesch-Himmelreich J, Hansen SH, Charriaut-Marlangue C, et al. Visualization by mass spectrometry of 2-dimensional changes in rat brain lipids, including N-acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB J. 2012;26(6):2667–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Nielsen HM, Rassing MR. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: Effect of pH and concentration. Eur J Pharm Sci. 2002;16(3):151–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen LL, Chetty DJ, Chien YW. A mechanistic analysis to characterize oramucosal permeation properties. Int J Pharm. 1999;184(1):63–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Larhed AW, Artursson P, Grasjo J, Bjork E. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Meng-Lund E, Marxen E, Pedersen AM, Mullertz A, Hyrup B, Holm R, et al. Ex vivo correlation of the permeability of metoprolol across human and porcine buccal mucosa. J Pharm Sci. 2014;103(7):2053–61.CrossRefPubMedGoogle Scholar
  30. 30.
    Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and beta-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int J Pharm. 2000;194(2):155–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Guerin J, Kriznik A, Ramalanjaona N, Le Roux Y, Girardet JM. Interaction between dietary bioactive peptides of short length and bile salts in submicellar or micellar state. Food Chem. 2016;209:114–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Mahalingam R, Ravivarapu H, Redkar S, Li X, Jasti BR. Transbuccal delivery of 5-aza-2′-deoxycytidine: Effects of drug concentration, buffer solution, and bile salts on permeation. AAPS PharmSciTech. 2007;8(3):E1–6.CrossRefGoogle Scholar
  33. 33.
    Squier CA, Hall BK. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J Invest Dermatol. 1985;84(3):176–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Caon T, Pan Y, Simoes CM, Nicolazzo JA. Exploiting the buccal mucosa as an alternative route for the delivery of donepezil hydrochloride. J Pharm Sci. 2014;103(6):1643–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Trim PJ. Rodent whole-body sectioning and MALDI mass spectrometry imaging. In: Cole LM, editor. Imaging mass spectrometry. New York: Humana Press; 2017. p. 175–89.CrossRefGoogle Scholar
  36. 36.
    Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85(1–3):129–40.CrossRefGoogle Scholar
  37. 37.
    Chatterjee S, Suresh KG. Visualization of stepwise drug-micelle aggregate formation and correlation with spectroscopic and calorimetric results. J Phys Chem B. 2016;120(45):11751–60.CrossRefPubMedGoogle Scholar
  38. 38.
    Rambharose S, Ojewole E, Branham M, Kalhapure R, Govender T. High-energy ball milling of saquinavir increases permeability across the buccal mucosa. Drug Dev Ind Pharm. 2014;40(5):639–48.CrossRefPubMedGoogle Scholar
  39. 39.
    Ostrenga J, Steinmetz C, Poulsen B. Significance of vehicle composition. I. Relationship between topical vehicle composition, skin penetrability, and clinical efficacy. J Pharm Sci. 1971;60(8):1175–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Shahi V, Zatz JL. Effect of formulation factors on penetration of hydrocortisone through mouse skin. J Pharm Sci. 1978;67(6):789–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Hu L, Damaj BB, Martin R, Michniak-Kohn BB. Enhanced in vitro transbuccal drug delivery of ondansetron HCl. Int J Pharm. 2011;404(1–2):66–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Curutchet C, Orozco M, Luque FJ. Solvation in octanol: Parametrization of the continuum MST model. J Comput Chem. 2001;22(11):1180–93.CrossRefGoogle Scholar
  43. 43.
    Bayen S, Zhang H, Desai MM, Ooi SK, Kelly BC. Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore's marine environment: Influence of hydrodynamics and physical–chemical properties. Environ Pollut. 2013;182:1–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Heemstra LB, Finnin BC, Nicolazzo JA. The buccal mucosa as an alternative route for the systemic delivery of risperidone. J Pharm Sci. 2010;99(11):4584–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eva Marxen
    • 1
  • Liang Jin
    • 2
  • Jette Jacobsen
    • 1
  • Christian Janfelt
    • 1
  • Birgitte Hyrup
    • 3
  • Joseph A. Nicolazzo
    • 2
  1. 1.Department of Pharmacy, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  3. 3.Fertin Pharma A/SVejleDenmark

Personalised recommendations