Pharmaceutical Research

, 35:24 | Cite as

Decorated Superparamagnetic Iron Oxide Nanoparticles with Monoclonal Antibody and Diethylene-Triamine-Pentaacetic Acid Labeled with Thechnetium-99m and Galium-68 for Breast Cancer Imaging

  • Marta de Souza Albernaz
  • Sergio Hiroshi Toma
  • Jeff Clanton
  • Koiti Araki
  • Ralph Santos-Oliveira
Research Paper



In this study we developed and tested an iron oxide nanoparticle conjugated with DTPA and Trastuzumab, which can efficiently be radiolabeled with 99m-Tc and Ga-68, generating a nanoradiopharmaceutical agent to be used for SPECT and PET imaging.


The production of iron oxide nanoparticle conjugated with DTPA and Trastuzumab was made using phosphorylethanolamine (PEA) surface modification. Both radiolabeling process was made by the direct radiolabeling of the nanoparticles. The in vivo assay was done in female Balb/c nude mice xenografted with breast cancer. Also a planar imaging using the radiolabeled nanoparticle was performed.


No thrombus and immune response leading to unwanted interaction and incorporation of nanoparticles by endothelium and organs, except filtration by the kidneys, was observed. In fact, more than 80% of 99mTc-DTPA-TZMB@Fe3O4 nanoparticles seems to be cleared by the renal pathway but the implanted tumor whose seems to increase the expression of HER2 receptors enhancing the uptake by all other organs.


However, even in this unfavorable situation the tumor bioconcentrated much larger amounts of the nano-agent than normal tissues giving clear enough contrast for breast cancer imaging for diagnostics purpose by both SPECT and PET technique.

Graphical Abstract


imaging nanoradiopharmaceuticals oncology smart device 



Iron oxide nanoparticles


Technetium 99 metastable


Invasive ductal carcinoma cell line


Diethylene triamine pentaacetic acid





Ge68– Ga68

Germanium 68 – Gallium-68


Gastrointestinal stromal tumor

HER2 receptors

Human epidermal growth factor receptor 2


Instant Thin Layer Chromatography – Silica Gel




Mega Becquerel


Mili Curie




Positron Emission Tomography


Regions of interest


Roswell Park Memorial Institute médium




Single Photon Emission Computed Tomography


Superparamagnetic iron oxide nanoparticles


Transmission Electron Microscopy





Authors thankfully acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the financial support.


  1. 1.
    Albernaz MS, Ospina CA, Rossi AM, Santos-Oliveira R. Radiolabelled nanohydroxyapatite with 99m Tc: perspectives to nanoradiopharmaceuticals construction. Artif Cells Nanomed Biotechnol. 2014;42(2):88–91.CrossRefGoogle Scholar
  2. 2.
    Alirezapour B, Jalilian AR, Rajabifar S, Mirzaii M, Moradkhani S, Pouladi M, et al. Preclinical evaluation of [11In]-DOTA-trastuzumab for clinical trials. J Cancer Res Ther. 2014;10(1):112–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Altanerova U, Babincova M, Babinec P, Benejova K, Jakubechova J, Altanerova V, et al. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine. 2017;12:7923–36.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bordim A, Patricio BFC, Sarcinelli MA, Albernaz MS, Santos-Oliveira R. Nanoradiopharmaceuticals: development of labeling process for polymeric nanoparticles. Anal Oncol. 2013;2(1):30–3.Google Scholar
  5. 5.
    Bouziotis P, Stellas D, Thomas E, Truillet C, Tsoukalas C, Lux F, et al. 68Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET/MRI-guided radiation therapy. Nanomedicine (London). 2017;12(13):1561–74.CrossRefGoogle Scholar
  6. 6.
    Bretcanu O, Miola M, Bianchi CL, Marangi I, Carbone R, Corazzari I, et al. In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application. Mater Sci Eng C Mater Biol Appl. 2017;73:778–787.
  7. 7.
    Costa M, Saldanha P. Risk reduction strategies in breast cancer prevention. Eur J Breast Health. 2017;13(3):103–12.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther. 2013;17(2):85–99.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eqqvist J. Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci. 2017;18(5):1102.CrossRefGoogle Scholar
  10. 10.
    Evertsson M, Kjellman P, Cinthio M, Andersson R, Tran TA, In't Zandt R, et al. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of 68Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci Rep. 2017;7(1):4824.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Freudenberg JA, Wang Q, Katsumata M, Drebin J, Nagamoto I, Greene MI. The role of HER2 in early breast cancer metastasis and the origins of resistance to HER2-targeted therapies. Exp Mol Pathol. 2009;87(1):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gao H, Liu X, Tang W, Niu D, Zhou B, Zhang H, et al. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nano. 2016;8(47):19573–80.Google Scholar
  13. 13.
    Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi M. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. Am J Nucl Med Mol Imaging. 2016;6(6):310–27.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev. 2008;60(12):1329–46.CrossRefPubMedGoogle Scholar
  15. 15.
    Jarockyte G, Daugelaite E, Stasys M, Statkute U, Poderys V, Tseng T-C, et al. Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. Int J Mol Sci. 2016;17(8):1193.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lam DL, Houssami N, Lee JM. Imaging surveillance after primary breast cancer treatment. AJR Am J Roentgenol. 2017;208(3):676–86.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ligiéro TB, Albernaz MS, Carvalho SM, Oliveira SMV, Santos-Oliveira R. Monoclonal antibodies: application in radiopharmacy. Curr Radiopharm. 2013;6:231–48.CrossRefPubMedGoogle Scholar
  18. 18.
    Ligiero TB, Cerqueira-Coutinho C, Albernaz MS, Szwed M, Bernardes ES, Wasserman MAV, et al. Diagnosing gastrointestinal stromal tumours by single photon emission computed tomography using nanoradiopharmaceuticals based on bevacizumab monoclonal antibody. Biomed Phys Eng Express. 2016;2(4):045017.CrossRefGoogle Scholar
  19. 19.
    Loi S, de Azambuja E, Pugliano L, Sotitiou C, Piccart MJ. HER2-overexpressing breast cancer: time for the cure with less chemotherapy? Curr Opin Oncol. 2011a;23(6):547–58.CrossRefPubMedGoogle Scholar
  20. 20.
    Lub-de Hooge MN, Kosterink JG, Perik PJ, Nijnuis H, Tran L, Bart J, et al. Preclinical characterisation of 111IN-DTPA-trastuzumab. Br J Radiol. 2004;143:99–106.Google Scholar
  21. 21.
    Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res. 2003;9:5078–84.PubMedGoogle Scholar
  22. 22.
    Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett. 2006;232(2):123–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Nasr SH, Kouyoumdjian H, Mallett C, Ramadan S, Zhu DC, Shapiro EM, et al. Detection of β-amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer's Disease. Small. 2017.
  24. 24.
    Oude Munnick TH, Dijkers EC, Netters SJ, Lub-de Hooge MN, Brouwers AH, Haasjes JG, et al. Trastuzumab pharmacokinetics influenced by extent human epidermal growth factor receptor 2 – positive tumor load. J Clin Oncol. 2010;28(21):e355–6.CrossRefGoogle Scholar
  25. 25.
    Paudel NR, Shvydka D, Parsai EI. A novel property of gold nanoparticles: free radical generation under microwave irradiation. Med Phys. 2016;43(4):1598.CrossRefPubMedGoogle Scholar
  26. 26.
    Pelaz B, Alexiou C, Alvarez-Pueble RA, Alves F, Andrews AM, Ashraf S, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11(3):2313–238.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pellico J, Lechuga-Vieco AV, Almarza E, Hidalgo A, Mesa-Nuñez C, Fernández-Barahona I, et al. In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Sci Rep. 2017;7(1):13242.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Poller JM, Zaloga J, Schreiber E, Unterweger H, Janko C, Radon P, et al. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Int J Nanomedicine. 2017;12:3207–20.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rainone P, Riva B, Belloli S, Sudati F, Ripamonti M, Verderio P, et al. Development of 99mTc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer. Int J Nanomedicine. 2017;12:3447–61.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rosa TG, Dos Santos SN, De Jesus Andreoli Pinto T, DDM G, Barja-Fidalgo TC, Ricci-Junior E, et al. Microradiopharmaceutical for metastatic melanoma. Pharm Res. 2017;
  31. 31.
    Sá LTM, Simmons S, Missailidis S, Silva MIP, Santos-Oliveira R. Aptamer-based nanoparticles for câncer targeting. J Drug Target. 2013;21(5):427–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Sarcinelli MA, Albernaz MS, Szwed M, Iscaife A, Leite KR, Junqueira MS, et al. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals. OncoTargetsTher. 2016;23(9):5847–54.Google Scholar
  33. 33.
    Serkova NJ. Nanoparticle-based magnetic resonance imaging on tumor-associated macrophages and inflammation. Front Immunol. 2017;8:590.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Silva F, Gano L, Cabral Campello MP, Marques R, Prudêncio I, Zambre A, et al. In vitro/in vivo “peeling” of multilayered aminocarboxylate gold nanoparticles evidenced by a kinetically stable 99mTc-label. Dalton Trans. 2017;46(42):14572–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, et al. The Expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl). 2010;4:35–41.PubMedCentralGoogle Scholar
  36. 36.
    Toma SH, Santo JJ, Araki K, Toma HE. Pushing the SERS sensitivity using superparamagnetic iron oxide nanoparticles: a non core-shell approach. Anal Chim Acta. 2015;855:70–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Tran T, Engfeldt T, Orlova A, Sandström M, Feldwisch J, Abrahmsén L, et al. (99m)Tc-maEEE-Z(HER2:342), an Affibody molecule-based tracer for the detection of HER2 expression in malignanttumors. Bioconjug Chem. 2007;18(6):1956–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Uchiyama MK, Toma SH, Rodrigues SF, Shimada AL, Loiola RA, Cervantes-Rodríguez HJ, et al. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int J Nanomedicine. 2015;10:4731–46.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Uchiyama MK, Toma SH, Cardoso RM, Rodrigues SF, Shimada ALB, Loiola RA, et al. Nanoparticles and their use as MRI contrast agent, BR102015013031–7, 08/06/2015.Google Scholar
  40. 40.
    Urban LABD, Chala LF, Bauab SDP, Schaefer MB, Dos Santos RP, Maranhão NMA, et al. Breast cancer screening: updated recommendations of the Brazilian College of Radiology and Diagnostic Imaging, Brazilian Breast Disease Society, and Brazilian Federation of Gynecological and Obstetrical Associations. Radiol Bras. 2017;50(4):244–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yang R-M, C-P FU, Fang J-Z, Xu X-D, Wei X-H, Tang W-J, et al. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int J Nanomedicine. 2017;12:197–206.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23:1553–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radiopharmacy ServiceUniversity Hospital Clementino Fraga FilhoRio de JaneiroBrazil
  2. 2.Instituto de Pesquisas Energéticas e Nucleares, Centro de RadiofarmáciaSão PauloBrazil
  3. 3.Department of Fundamental Chemistry, Institute of ChemistryUniversity of São PauloSão PauloBrazil
  4. 4.Department of RadiologyVanderbilt University Medical CenterNashvilleUSA
  5. 5.Brazilian Nuclear Energy CommissionNuclear Engineering InstituteRio de JaneiroBrazil

Personalised recommendations