Pharmaceutical Research

, Volume 34, Issue 11, pp 2250–2259 | Cite as

Effect of Aggregation on the Hydrodynamic Properties of Bovine Serum Albumin

  • Mariya A. PindrusEmail author
  • James L. Cole
  • Japneet Kaur
  • Steven J. Shire
  • Sandeep Yadav
  • Devendra S. Kalonia
Research Paper



To systematically analyze shape and size of soluble irreversible aggregates and the effect of aggregate formation on viscosity.


Online light scattering, refractive index and viscosity detectors attached to HPLC (Viscotek®) were used to study aggregation, molecular weight and intrinsic viscosity of bovine serum albumin (BSA). Irreversible aggregates were generated by heat stress. Bulk viscosity was measured by an oscillating piston viscometer.


As BSA was heated at a higher concentration or for a longer time, the relative contribution, molecular weight and intrinsic viscosity of aggregate species increased. Molecular shape was evaluated from intrinsic viscosity values, and aggregates were estimated to be more asymmetric than monomer species. The presence of aggregates resulted in an increase in bulk viscosity when relative contribution of very high molecular weight species exceeded 10%.


For model system and conditions studied, generation of higher order aggregate species was concluded to be associated with an increase in molecular asymmetry. Elevated viscosity in the presence of aggregated species points to molecular asymmetry being a critical parameter affecting solution viscosity of BSA.


aggregation effective molecular shape intrinsic viscosity 



Bovine serum albumin


Differential pressure


High molecular weight


Low angle light scattering


Monoclonal antibody




Protein-protein interactions


Right angle light scattering


Refractive index


Size exclusion chromatography


Triple detector array


Very high molecular weight



Authors would like to thank Lauren Fontana and Rui Fang for help with some experimental aspects, and Elizabeth Zecca for critical reading of the manuscript. Generous material and financial support from Genentech, Inc., as well as Outstanding Scholar and summer fellowships from graduate school at University of Connecticut are also acknowledged.

Supplementary material

11095_2017_2231_MOESM1_ESM.docx (81 kb)
ESM 1 (DOCX 81 kb)


  1. 1.
    Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93:1390–402.CrossRefPubMedGoogle Scholar
  2. 2.
    Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice. Pharm Res. 1997;14:1472–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8:E501–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014;30:211–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Choi S, Park J. Microfluidic rheometer for characterization of protein unfolding and aggregation in microflows. Small. 2010;6:1306–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Kovalchuk N, Starov V, Holdich R. Effect of aggregation on viscosity of colloidal suslension. Colloid J. 2010;72:647–52.CrossRefGoogle Scholar
  7. 7.
    Pathak JA, Sologuren RR, Narwal R. Do clustering monoclonal antibody solutions really have a concentration dependence of viscosity? Biophys J. 2013;104:913–23.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94:1928–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol Pharm. 2012;9:791–802.CrossRefPubMedGoogle Scholar
  10. 10.
    Ross PD, Minton AP. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun. 1977;76:971–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci. 1951;6:162–70.CrossRefGoogle Scholar
  12. 12.
    Frensdorff H, Watson M, Kauzmann W. The kinetics of protein denaturation. IV. The viscosity and gelation of urea solutions of Ovalbumin1. J. Am. Chem Soc. 1953;75:5157–66.CrossRefGoogle Scholar
  13. 13.
    Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20:1325–36.CrossRefPubMedGoogle Scholar
  14. 14.
    Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98:927–38.CrossRefPubMedGoogle Scholar
  15. 15.
    Sharma VK, Kalonia DS. Experimental detection and characterization of protein aggregates. Aggregation of Ther Proteins. 2010:205–56.Google Scholar
  16. 16.
    Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12:708–15.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kalonia C, Kumru OS, Kim JH, Middaugh CR, Volkin DB. Radar chart array analysis to visualize effects of formulation variables on IgG1 particle formation as measured by multiple analytical techniques. J Pharm Sci. 2013;102:4256–67.CrossRefPubMedGoogle Scholar
  18. 18.
    Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103:796–809.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kalonia C, Kumru OS, Prajapati I, Mathaes R, Engert J, Zhou S, et al. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data. J Pharm Sci. 2015;104:536–47.CrossRefPubMedGoogle Scholar
  20. 20.
    Harding SE. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol. 1997;68:207–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Harding SE. On the hydrodynamic analysis of macromolecular conformation. Biophys Chem. 1995;55:69–93.CrossRefPubMedGoogle Scholar
  22. 22.
    Bajaj H, Sharma VK, Kalonia DS. Determination of second virial coefficient of proteins using a dual-detector cell for simultaneous measurement of scattered light intensity and concentration in SEC-HPLC. Biophys J. 2004;87:4048–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Solomon O, Ciutǎ I. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J Appl Polym Sci. 1962;6:683–6.CrossRefGoogle Scholar
  24. 24.
    Solomon VO, Gotesman B. Zur berechnung der viskositätszahl aus einpunktmessungen. Die Makromol Chem. 1967;104:177–84.CrossRefGoogle Scholar
  25. 25.
    Yadav S, Shire SJ, Kalonia DS. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci. 2010;99:4812–29.CrossRefPubMedGoogle Scholar
  26. 26.
    Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286:25118–33.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289:1–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Buzzell JG, Tanford C. The effect of charge and ionic strength on the viscosity of ribonuclease. J Phys Chem. 1956;60:1204–7.CrossRefGoogle Scholar
  29. 29.
    Tanford C, Buzzell J. G. The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem. 1956;60:225–31.CrossRefGoogle Scholar
  30. 30.
    El Kadi N, Taulier N, Le Huerou J, Gindre M, Urbach W, Nwigwe I, et al. Unfolding and refolding of bovine serum albumin at acid pH: ultrasound and structural studies. Biophys J. 2006;91:3397–404.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Curvale R, Masuelli M, Padilla AP. Intrinsic viscosity of bovine serum albumin conformers. Int J Biol Macromol. 2008;42:133–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Sarangapani PS, Hudson SD, Migler KB, Pathak JA. The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology. Biophys J. 2013;105:2418–26.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Squire PG, Moser P, O'Konski CT. Hydrodynamic properties of bovine serum albumin monomer and dimer. Biochem (N Y). 1968;7:4261–72.CrossRefGoogle Scholar
  34. 34.
    Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acuña AU. The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study. Biophys J. 2001;80:2422–30.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mehl J, Oncley J, Simha R. Viscosity and the shape of protein molecules. Science. 1940;92:132–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mariya A. Pindrus
    • 1
    Email author
  • James L. Cole
    • 2
  • Japneet Kaur
    • 1
  • Steven J. Shire
    • 3
  • Sandeep Yadav
    • 3
  • Devendra S. Kalonia
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsUSA
  2. 2.Department of Molecular and Cell Biology and Department of ChemistryUniversity of ConnecticutStorrsUSA
  3. 3.Late Stage Pharmaceutical DevelopmentGenentech, Inc.South San FranciscoUSA

Personalised recommendations