Advertisement

Pharmaceutical Research

, Volume 34, Issue 10, pp 2075–2083 | Cite as

Gentamicin-Loaded Polysaccharide Membranes for Prevention and Treatment of Post-operative Wound Infections in the Skeletal System

  • Urszula Cibor
  • Małgorzata Krok-Borkowicz
  • Monika Brzychczy-Włoch
  • Łucja Rumian
  • Krzysztof Pietryga
  • Dominika Kulig
  • Wojciech Chrzanowski
  • Elżbieta PamułaEmail author
Research Paper

ABSTRACT

Purpose

To develop polysaccharide-based membranes that allow controlled and localized delivery of gentamicin for the treatment of post-operative bone infections.

Methods

Membranes made of gellan gum (GUM), sodium alginate (ALG), GUM and ALG crosslinked with calcium ions (GUM + Ca and ALG + Ca, respectively) as well as reference collagen (COL) were produced by freeze-drying. Mechanical properties, drug release, antimicrobial activity and cytocompatibility of the membranes were assessed.

Results

The most appropriate handling and mechanical properties (Young’s modulus, E = 92 ± 4 MPa and breaking force, F MAX  = 2.6 ± 0.1 N) had GUM + Ca membrane. In contrast, COL membrane showed F MAX  = 0.14 ± 0.02 N, E = 1.0 ± 0.3 MPa and was deemed to be unsuitable for antibiotic delivery. The pharmacokinetic data demonstrated a uniform and sustainable delivery of gentamicin from GUM + Ca (44.4 ± 1.3% within 3 weeks), while for COL, ALG and ALG + Ca membranes the most of the drug was released within 24 h (55.3 ± 1.9%, 52.5 ± 1.5% and 37.5 ± 1.8%, respectively). Antimicrobial activity against S. aureus and S. epidermidis was confirmed for all the membranes. GUM + Ca and COL membranes supported osteoblasts growth, whereas on ALG and ALG + Ca membranes cell growth was reduced.

Conclusions

GUM + Ca membrane holds promise for effective treatment of bone infections thanks to favorable pharmacokinetics, bactericidal activity, cytocompatibility and good mechanical properties.

Keywords

alginate gellan gum gentamicin local drug delivery membranes 

ABBREVIATIONS

Alg

Sodium alginate

ALG

Sodium alginate membrane

ALG + Ca

Sodium alginate membrane crosslinked with calcium ions

COL

Collagen membrane

E

Young’s modulus

EMEM

Eagle’s minimal essential medium

EUCAST

European Committee on Antimicrobial Susceptibility Testing

εFMAX

Maximal elongation at break

FMAX

Breaking force

GG

Gellan gum

GUM

Gellan gum membrane

GUM + Ca

Gellan gum membrane crosslinked with calcium ions

MIC

Minimum inhibitory concentration

MG-63

Osteosarcoma cell line

MWCO

Molecular weight cut off

OPA

Orthophthaldialdehyde

PBS

Phosphate-buffered saline

PMMA

Poly(methyl metacrylate)

SEM

Scanning electron microscopy

S.E.M.

Standard error of the mean

TCPS

Tissue culture polystyrene

UHQ-water

Ultra-high quality water

Notes

ACKNOWLEDGEMENTS AND DISCLOSURES

National Science Centre, Poland (Grant no: 012/05/B/ST8/00129) provided financial support to this project. The authors have no conflict of interest to declare.

REFERENCES

  1. 1.
    Lima AL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis. 1999;5(1):9–17.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hogan A, Heppert VG, Suda AJ. Osteomyelitis. Arch Orthop Trauma Surg. 2013;133(9):1183–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Sendi P, Proctor RA. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol. 2009;17(2):54–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts, incidence, nature, and treatment. J Bone Joint Surg Am. 1988;70(9):369–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364:369–79.CrossRefPubMedGoogle Scholar
  8. 8.
    Buttaro MA, Morandi A, Rivello HG, Piccaluga F. Histology of vancomycin-supplemented impacted bone allografts in revision total hip arthroplasty. J Bone Joint Surg (Br). 2005;87:1684–7.CrossRefGoogle Scholar
  9. 9.
    Buttaro MA, Pusso R, Piccaluga FJ. Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty. J Bone Joint Surg (Br). 2005;87B:314–9.CrossRefGoogle Scholar
  10. 10.
    Gautschi OP, Schlett CL, Fournier J-Y, Cadosch D. Laboratory confirmed polymethyl-methacrylate Palacos®-hypersensitivity after cranioplasty. Clin Neurol Neurosurg. 2010;112(10):915–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Raja SG. Local application of gentamicin-containing collagen implant in the prophylaxis and treatment of surgical site infection following cardiac surgery. Int J Surg. 2012;10:10–4.CrossRefGoogle Scholar
  12. 12.
    Salem KH. Local application of gentamicin-containing collagen implant in the prophylaxis of surgical site infection following gastrointestinal surgery. J Infect Public Health. 2014;7(1):66–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Anton de Bruin FJ, Gosselink MP, van der Harst E. Local application of gentamicin-containing collagen implant in the prophylaxis of surgical site infection following gastrointestinal surgery. Int J Surg. 2012;10(1):21–7.CrossRefGoogle Scholar
  14. 14.
    Wachol-Drewek Z, Pfeiffer M, Scholl E. Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials. 1996;17(17):1733–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Susheel C, Ramesh S, Chand SU, Ashwani S, Nitesh G, Daljit S, et al. Use of gentamicin-loaded collagen sponge in internal fixation of open fractures. Chin J Traumatol. 2011;14:209–14.Google Scholar
  16. 16.
    Broekhuizen CAN, Schultz MJ, Van Der Wal AC, Boszhard L, de Boer L, Vandenbroucke-Grauls CM, et al. Tissue around catheters is a niche for bacteria associated with medical device infection. Crit Care Med. 2008;36:2395–402.CrossRefPubMedGoogle Scholar
  17. 17.
    Broekhuizen CAN, Vandenbroucke-Grauls CM, Zaat SA. Microscopic detection of viable Staphylococcus epidermidis in peri-Implant tissue in experimental biomaterial-associated infection, identified by bromodeoxyuridine incorporation. J Infect Immun. 2010;78(3):954–62.CrossRefGoogle Scholar
  18. 18.
    Kuijpers AJ, Engbers GH, van Wachem PB, Krijgsveld J, Zaat SA, Dankert J, et al. Controlled delivery of antibacterial proteins from biodegradable matrices. J Control Release. 1998;53(1–3):235–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res. 2005;437:7–11.CrossRefGoogle Scholar
  20. 20.
    Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001;47(6):885–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials. 2003;24(10):1829–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez P, Guzman J, Espin G. A mutation impairing alginate production increased accumulation of poly-b-hydroxybutyrate in Azotobacter vinelandii. Biotechnol Lett. 1997;19:909–12.CrossRefGoogle Scholar
  23. 23.
    Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym. 2012;87:274–83.CrossRefGoogle Scholar
  24. 24.
    Wang HB, Zhou J. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med. 2010;4:1044–55.Google Scholar
  25. 25.
    Stancu IC, Dragusin DM. Porous calcium alginate-gelatin interpenetrated matrix and its biomineralization potential. J Mater Sci Mater Med. 2011;22:451–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Kolambkar Y, Dupont K, Boerckel J, Huebsch N, Mooney D, Hutmacher D, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2001;32:65–74.CrossRefGoogle Scholar
  27. 27.
    Doner LW, Douds BD. Purification of commercial gellan to mono gellan cation salts results in acute modification of solution and gel forming properties. Carbohydr Res. 1995;273:225–33.CrossRefPubMedGoogle Scholar
  28. 28.
    O’Neil MA, Silvendran RR, Morris J. Structure of extracellular gelling 566 polysaccharide produced by pseudomonas elodea. Curr Res. 1985;124:123–33.Google Scholar
  29. 29.
    Babu RJ, Sathigari S, Kumar MT, Pandit JK. Formulation of controlled release gellan gum macro beads of amoxicillin. Curr Drug Delivery. 2010;7(1):36–43.CrossRefGoogle Scholar
  30. 30.
    Posadowska U, Brzychczy-Włoch M, Pamula E. Injectable gellan gum-based nanoparticle-loaded system for the local delivery of vancomycin in osteomeylitis treatment. J Mater Sci Mater Med. 2016;27(1):1–9.CrossRefGoogle Scholar
  31. 31.
    Oliveira JT, Santos TC, Martins L, Picciochi R, Marques AP, Castro AG, et al. Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluations. Tissue Eng A. 2010;16(1):343–53.CrossRefGoogle Scholar
  32. 32.
    Douglas T, Wlodarczyk M, Pamula E, Declercq H, de Mulder E, Bucko M, et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J Tissue Eng Regen Med. 2014;8(11):906–18.CrossRefPubMedGoogle Scholar
  33. 33.
    Anhalt JP. Assay of gentamicin in serum by high-pressure liquid chromatography. Antimicrob Agents Chemother. 1977;11(4):651–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shukla A, Fang JC, Puranam S, Hammond PT. Release of vancomycin from multilayer coated absorbent gelatin sponges. J Control Release. 2012;157(1):64–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Funami T, Noda S, Nakauma M, Ishihara S, Takahashi R, Al-Assaf S, et al. Molecular structures of gellan gum imaged with atomic force microscopy (AFM) in relation to the rheological behavior in aqueous systems in the presence of sodium chloride. Food Hydrocoll. 2009;23:548–54.CrossRefGoogle Scholar
  36. 36.
    Chang SJ, Huang Y-T, Yang S-C, Kuo S-M, Lee M-W. In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr Polym. 2012;88:684–9.CrossRefGoogle Scholar
  37. 37.
    Ruszczaka Z, Friessc W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev. 2003;55:1679–98.CrossRefGoogle Scholar
  38. 38.
    Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med. 2012;4(153):153rv10.CrossRefPubMedGoogle Scholar
  39. 39.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49:1993–2007.CrossRefGoogle Scholar
  40. 40.
    Aderibigbe BA, Varaprasad K, Sadiku ER, Ray SS, Mbianda XY, Fotsing MC, et al. Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. Int J Biol Macromol. 2015;73:115–23.CrossRefPubMedGoogle Scholar
  41. 41.
    The European Committee on Antimicrobial Susceptibility Testing, Version 5.0, 2015, http://www.eucast.org. Accessed 9 April 2016.
  42. 42.
    Włodarczyk-Biegun MK, Werten MWT, de Wolf FA, van den Beucken JJP, Leeuwenburgh SCG, Kamperman M, et al. Genetically engineered silk–collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response. Acta Biomater. 2014;10(8):3620–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Fonseca KB, Maia FR, Cuz FA, Andrade D, Juliano MA, Granja PL, et al. Enzymatic, physiocochemical and biological properties of MMP-sensitive alginate hydrogels. Soft Matter. 2013;9:3283–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Urszula Cibor
    • 1
  • Małgorzata Krok-Borkowicz
    • 1
  • Monika Brzychczy-Włoch
    • 2
  • Łucja Rumian
    • 1
  • Krzysztof Pietryga
    • 1
  • Dominika Kulig
    • 1
  • Wojciech Chrzanowski
    • 3
    • 4
  • Elżbieta Pamuła
    • 1
    Email author
  1. 1.Department of BiomaterialsAGH University of Science and Technology, Faculty of Materials Science and CeramicsKrakówPoland
  2. 2.Department of MicrobiologyJagiellonian University, Medical CollegeKrakówPoland
  3. 3.Faculty of PharmacyThe University of SydneySydneyAustralia
  4. 4.The Australian Institute of Nanoscale Science and TechnologyUniversity of SydneySydneyAustralia

Personalised recommendations