Pharmaceutical Research

, Volume 34, Issue 9, pp 1773–1783 | Cite as

Polycaprolactone Based Nanoparticles Loaded with Indomethacin for Anti-Inflammatory Therapy: From Preparation to Ex Vivo Study

  • Waisudin Badri
  • Karim Miladi
  • Sophie Robin
  • Céline Viennet
  • Qand Agha Nazari
  • Géraldine Agusti
  • Hatem Fessi
  • Abdelhamid ElaissariEmail author
Research Paper



This work focused on the preparation of polycaprolactone based nanoparticles containing indomethacin to provide topical analgesic and anti-inflammatory effect for symptomatic treatment of inflammatory diseases. Indomethacin loaded nanoparticles are prepared for topical application to decrease indomethacin side effects and administration frequency. Oppositely to already reported works, in this research non-invasive method has been used for the enhancement of indomethacin dermal drug penetration. Ex-vivo skin penetration study was carried out on fresh human skin.


Nanoprecipitation was used to prepare nanoparticles. Nanoparticles were characterized using numerous techniques; dynamic light scattering, SEM, TEM, DSC and FTIR. Regarding ex-vivo skin penetration of nanoparticles, confocal laser scanning microscopy has been used.


The results showed that NPs hydrodynamic size was between 220 to 245 nm and the zeta potential value ranges from −19 to −13 mV at pH 5 and 1 mM NaCl. The encapsulation efficiency was around 70% and the drug loading was about 14 to 17%. SEM and TEM images confirmed that the obtained nanoparticles were spherical with smooth surface. The prepared nanoparticles dispersions were stable for a period of 30 days under three temperatures of 4°C, 25°C and 40°C. In addition, CLSM images proved that obtained NPs can penetrate the skin as well.


The prepared nanoparticles are submicron in nature, with good colloidal stability and penetrate the stratum corneum layer of the skin. This formulation potentiates IND skin penetration and as a promising strategy would be able to decline the side effects of IND.


anti-inflammatory indomethacin nanoparticles polycaprolactone skin penetration 


COX enzyme

Cyclooxygenase enzyme


Confocal laser scanning microscopy


Differential scanning calorimeter


Encapsulation efficiency


Fourier transform infrared spectroscopy






Non-Steroidal Anti-inflammatory Drugs




Polyvinyl alcohol


Room temperature (25°C)


Scanning Electron Microscopy


Transmission Electron Microscopy


Acknowledgments and Disclosures

Waisudin Badri gratefully acknowledges French foreign affairs ministry and Afghanistan higher education ministry for providing the PhD scholarship.


  1. 1.
    Cordero JA, Camacho M, Obach R, Domenech J, Vila L. In vitro based index of topical anti-inflammatory activity to compare a series of NSAIDs. Eur J Pharm Biopharm. 2001;51:135–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Sostres C, Gargallo CJ, Arroyo MT, Lanas A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2010;24:121–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Bateman DN. Non-steroidal anti-inflammatory drugs. Medicine (Baltimore). 2012;40:140.CrossRefGoogle Scholar
  4. 4.
    Kim SJ, Flach AJ, Jampol LM. Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv Ophthalmol. 2010;55:108–33.CrossRefPubMedGoogle Scholar
  5. 5.
    Ziltener J-L, Leal S, Fournier P-E. Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Phys Rehabil Med. 2010;53:278–82. 282–8CrossRefPubMedGoogle Scholar
  6. 6.
    Závišová V, Koneracká M, Štrbák O, Tomašovičová N, Kopčanský P, Timko M, et al. Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. J Magn Magn Mater. 2007;311:379–82.CrossRefGoogle Scholar
  7. 7.
    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf B: Biointerfaces. 2012;92:50–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Suksiriworapong J, Sripha K, Kreuter J, Junyaprasert VB. Comparative study of Ibuprofen and Indomethacin loaded poly (caprolactone) nanoparticles: physicochemical properties. J Magn Magn Mater. 2010;37:17–27.Google Scholar
  10. 10.
    Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496:173–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Jelvehgari M, Montazam SH. Comparison of Microencapsulation by Emulsion-Solvent Extraction/Evaporation Technique Using Derivatives Cellulose and Acrylate-Methacrylate Copolymer as Carriers. Jundishapur J Nat Pharm Prod. 2012;7:144–52.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.CrossRefGoogle Scholar
  13. 13.
    Miladi K, Sfar S, Fessi H, Elaissari A. Nanoprecipitation process: from particle preparation to in vivo applications. Polymer Nanoparticles for Nanomedicines 2016. p. 17–53.Google Scholar
  14. 14.
    Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release Off J Control Release Soc. 2005;104:51–66.CrossRefGoogle Scholar
  16. 16.
    Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release Off. 2012;158:15–33.CrossRefGoogle Scholar
  17. 17.
    Badri W, Miladi K, Nazari QA, Fessi H, Elaissari A. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids Surf A Physicochem Eng Asp. 2017;516:238–44.CrossRefGoogle Scholar
  18. 18.
    Pygall SR, Whetstone J, Timmins P, Melia CD. Pharmaceutical applications of confocal laser scanning microscopy: The physical characterisation of pharmaceutical systems. Adv Drug Deliv Rev. 2007;59:1434–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99:53–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang X, Zhang X, Wang S, Liu M, Tao L, Wei Y. Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale. 2012;5:147–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Adibkia K, Javadzadeh Y, Dastmalchi S, Mohammadi G, Niri FK, Alaei-Beirami M. Naproxen-eudragit RS100 nanoparticles: preparation and physicochemical characterization. Colloids Surf B: Biointerfaces. 2011;83:155–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Gratieri T, Schaefer UF, Jing L, Gao M, Kostka K-H, Lopez RFV, et al. Penetration of quantum dot particles through human skin. J Biomed Nanotechnol. 2010;6:586–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Vulovic N, Primorac M, Stupar M, Ford JL. Some studies into the properties of indomethacin suspensions intended for ophthalmic use. Int J Pharm. 1989;55:123–8.CrossRefGoogle Scholar
  24. 24.
    Gupta KC, Haider A, Choi Y, Kang I. Nanofibrous scaffolds in biomedical applications. Biomater Res. 2014;18:5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Braz WR, Rocha NL, de Faria EH, Silva MLAE, Ciuffi KJ, Tavares DC, et al. Incorporation of anti-inflammatory agent into mesoporous silica. Nanotechnology. 2016;27(38):385,103.CrossRefGoogle Scholar
  26. 26.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci. 2004;273:381–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin H-L, Zhang G-C, Lin S-Y. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy. J Therm Anal Calorim. 2015;120:679–87.CrossRefGoogle Scholar
  28. 28.
    Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin-loaded PLGA nanoparticles by iontophoresis. Colloids Surf B: Biointerfaces. 2011;88:706–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Waisudin Badri
    • 1
    • 2
  • Karim Miladi
    • 1
  • Sophie Robin
    • 3
  • Céline Viennet
    • 3
  • Qand Agha Nazari
    • 2
  • Géraldine Agusti
    • 1
  • Hatem Fessi
    • 1
  • Abdelhamid Elaissari
    • 1
    Email author
  1. 1.Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007VilleurbanneFrance
  2. 2.Faculty of PharmacyKabul UniversityKabulAfghanistan
  3. 3.Laboratory of Engineering and Cutaneous Biology, UMR 1098Bourgogne Franche-Comté UniversityBesançonFrance

Personalised recommendations