Pharmaceutical Research

, Volume 34, Issue 6, pp 1264–1275 | Cite as

The Cytotoxic Action of Cytochrome C/Cardiolipin Nanocomplex (Cyt-CL) on Cancer Cells in Culture

  • Yury A. Vladimirov
  • Can Sarisozen
  • Georgy K. Vladimirov
  • Nina Filipczak
  • Anastasia M. Polimova
  • Vladimir P. Torchilin
Research Paper



The effect of existing anti-cancer therapies is based mainly on the stimulation of apoptosis in cancer cells. Here, we have demonstrated the ability of a catalytically-reactive nanoparticle-based complex of cytochrome c with cardiolipin (Cyt-CL) to induce the apoptosis and killing of cancer cells in a monolayer cell culture.


Cyt-CL nanoparticles were prepared by complexing CytC with different molar excesses of CL. Following characterization, cytotoxicity and apoptosis inducing effects of nanoparticles were investigated. In an attempt to identify the anticancer activity mechanism of Cyt-CL, pseudo-lipoxygenase and lipoperoxidase reaction kinetics were measured by chemiluminescence.


Using chemiluminescence, we have demonstrated that the Cyt-CL complex produces lipoperoxide radicals in two reactions: by decomposition of lipid hydroperoxides, and by lipid peroxidation under the action of H2O2. Antioxidants inhibited the formation of lipid radicals. Cyt-CL nanoparticles, but not the CytC alone, dramatically enhanced the level of apoptosis and cell death in two cell lines: drug-sensitive (A2780) and doxorubicin-resistant (A2780-Adr). The proposed mechanism of the cytotoxic action of Cyt-CL involves either penetration through the cytoplasm and outer mitochondrial membrane and catalysis of lipid peroxidation reactions at the inner mitochondrial membrane, or/and activation of lipid peroxidation within the cytoplasmic membrane.


Here we propose a new type of anticancer nano-formulation, with an action based on the catalytic action of Cyt-CL nanoparticles on the cell membrane and and/or mitochondrial membranes that results in lipid peroxidation reactions, which give rise to activation of apoptosis in cancer cells, including multidrug resistant cells.

Key Words

apoptosis cytotoxicity cytochrome c-cardiolipin complex lipid peroxidation lipid peroxyl radicals 



B-cell/lymphoma 2


Bovine heart cardiolipin


Cytochrome c


Complex of cytochrome с with cardiolipin


Outer and inner mitochondrial membranes


Multidrug resistance


Polydispersity index


1,1′,2,2′-Tetraoleoyl cardiolipin


10 mM NaH2PO4-Na2HPO4 (pH = 7.4)


  1. 1.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590–614.CrossRefPubMedGoogle Scholar
  5. 5.
    Daum G, Vance JE. Import of lipids into mitochondria. Prog Lipid Res. 1997;36(2–3):103–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Daum G. Lipids of mitochondria. Biochim Biophys Acta. 1985;822(1):1–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, et al. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry-Us. 2006;45(15):4998–5009.CrossRefGoogle Scholar
  8. 8.
    Vladimirov YA, Proskurnina EV, Izmailov DY, Novikov AA, Brusnichkin AV, Osipov AN, et al. Cardiolipin activates cytochrome c peroxidase activity since it facilitates H(2)O(2) access to heme. Biochemistry (Mosc). 2006;71(9):998–1005.CrossRefGoogle Scholar
  9. 9.
    Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol. 2005;1(4):223–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood. 1997;89(6):1845–53.PubMedGoogle Scholar
  11. 11.
    Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Lopez J, Tait SW. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112(6):957–62.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335(6189):440–2.CrossRefPubMedGoogle Scholar
  15. 15.
    Mendez J, Morales Cruz M, Delgado Y, Figueroa CM, Orellano EA, Morales M, et al. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm. 2014;11(1):102–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Santra S, Kaittanis C, Perez JM. Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm. 2010;7(4):1209–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim SK, Foote MB, Huang L. The targeted intracellular delivery of cytochrome C protein to tumors using lipid-apolipoprotein nanoparticles. Biomaterials. 2012;33(15):3959–66.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vladimirov YA, Proskurnina EV, Alekseev AV. Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex. Biochemistry (Mosc). 2013;78(10):1086–97.CrossRefGoogle Scholar
  19. 19.
    Vladimirov YA, Nol’ YT, Volkov VV. Protein-lipid nanoparticles that determine whether cells will live or die. Crystallogr Rep+. 2011;56(4):553–9.CrossRefGoogle Scholar
  20. 20.
    de Kruijff B, Cullis PR. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes. Biochim Biophys Acta. 1980;602(3):477–90.CrossRefPubMedGoogle Scholar
  21. 21.
    Bergstrom CL, Beales PA, Lv Y, Vanderlick TK, Groves JT. Cytochrome c causes pore formation in cardiolipin-containing membranes. Proc Natl Acad Sci U S A. 2013;110(16):6269–74.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Puchkov MN, Vassarais RA, Korepanova EA, Osipov AN. Cytochrome c produces pores in cardiolipin-containing planar bilayer lipid membranes in the presence of hydrogen peroxide. Biochim Biophys Acta. 2013;1828(2):208–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Marchenkova MA, Dyakova YA, Tereschenko EY, Kovalchuk MV, Vladimirov YA. Cytochrome c complexes with cardiolipin monolayer formed under different surface pressure. Langmuir. 2015;31(45):12426–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Tyurina YY, Kini V, Tyurin VA, Vlasova II, Jiang J, Kapralov AA, et al. Mechanisms of cardiolipin oxidation by cytochrome c: relevance to pro- and antiapoptotic functions of etoposide. Mol Pharmacol. 2006;70(2):706–17.CrossRefPubMedGoogle Scholar
  25. 25.
    Basova LV, Kurnikov IV, Wang L, Ritov VB, Belikova NA, Vlasova II, et al. Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry-Us. 2007;46(11):3423–34.CrossRefGoogle Scholar
  26. 26.
    Belikova NA, Jiang J, Tyurina YY, Zhao Q, Epperly MW, Greenberger J, et al. Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. Int J Radiat Oncol Biol Phys. 2007;69(1):176–86.CrossRefPubMedGoogle Scholar
  27. 27.
    Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med. 2009;46(11):1439–53.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jiang J, Huang Z, Zhao Q, Feng W, Belikova NA, Kagan VE. Interplay between bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis. Biochem Biophys Res Commun. 2008;368(1):145–50.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids. 2014;179:64–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Fabisiak JP, Tyurina YY, Tyurin VA, Kagan VE. Quantification of selective phosphatidylserine oxidation during apoptosis. Methods Mol Biol. 2014;1105:603–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, et al. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med. 2004;37(12):1963–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, et al. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 2000;477(1–2):1–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Tyurin VA, Balasubramanian K, Winnica D, Tyurina YY, Vikulina AS, He RR, et al. Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic 'eat-me' signals: cleavage and inhibition of phagocytosis by Lp-PLA2. Cell Death Differ. 2014;21(5):825–35.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Izmailov D. PowerGraph: the powerfull software for data acquisition, visualization, processing and analysis 2003 [Available from:
  35. 35.
    Vladimirov YA, Sharov VS, Driomina ES, Reznitchenko AV, Gashev SB. Coumarin derivatives enhance the chemiluminescence accompanying lipid peroxidation. Free Radic Biol Med. 1995;18(4):739–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Iwase H, Sakurada K, Takatori T, Nagao M, Niijima H, Matsuda Y, et al. Calcium ions potentiate lipoxygenase activity of cytochrome c at the physiological pH. Biochem Biophys Res Commun. 1998;243(2):485–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Tuominen EK, Wallace CJ, Kinnunen PK. Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem. 2002;277(11):8822–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Niv R, Assaraf YG, Segal D, Pirak E, Reiter Y. Targeting multidrug resistant tumor cells with a recombinant single-chain FV fragment directed to P-glycoprotein. Int J Cancer. 2001;94(6):864–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Minko T, Kopeckova P, Pozharov V, Kopecek J. HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release. 1998;54(2):223–33.CrossRefPubMedGoogle Scholar
  40. 40.
    de Jong E, Winkel P, Poelstra K, Prakash J. Anticancer effects of 15d-prostaglandin-J2 in wild-type and doxorubicin-resistant ovarian cancer cells: novel actions on SIRT1 and HDAC. PLoS One. 2011;6(9):e25192.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vladimirov YA. Intrinsic (low-level) chemiluminescence. In: Punchard N, Kelly F, editors. Free Radicals: A Practical Approach, Practical Approach Series. editors ed. Oxford: Oxford University Press; 1996. p. 65–82.Google Scholar
  42. 42.
    Vladimirov YA. Intrinsic chemiluminescence of living tissues. In: Nohl H, Esterbauer H, Rice-Evans C, editors. Free radicals in the environment, medicine and toxicology. London: Richelieu Press; 1994. p. 345–73.Google Scholar
  43. 43.
    Vladimirov YA, Arroyo A, Taylor JM, Tyurina YY, Matsura T, Tyurin VA, et al. Quinolizin-coumarins as physical enhancers of chemiluminescence during lipid peroxidation in live HL-60 cells. Arch Biochem Biophys. 2000;384(1):154–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Belikova NA, Tyurina YY, Borisenko G, Tyurin V, Samhan Arias AK, Yanamala N, et al. Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria. J Am Chem Soc. 2009;131(32):11288–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Sharov VS, Driomina ES, Vladimirov YA. Two processes responsible for chemiluminescence development in the course of iron-mediated lipid peroxidation. J Biolumin Chemilumin. 1996;11(2):91–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Izmailov DY, Bolevich SB, Proskurnina EV, Shishkanov SA, Vladimirova GA, Vladimirov YA. The mechanism and kinetics of the chemiluminescent reaction in the peroxidase-H2O2-luminol system in the presence of different antioxidants: the results of mathematical simulation. Free radical biology and medicine. 2016;in press.Google Scholar
  47. 47.
    Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6(5):513–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12(9):1543–68.CrossRefPubMedGoogle Scholar
  49. 49.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Marsden VS, Ekert PG, Van Delft M, Vaux DL, Adams JM, Strasser A. Bcl-2-regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9. J Cell Biol. 2004;165(6):775–80.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kapralov AA, Yanamala N, Tyurina YY, Castro L, Samhan-Arias A, Vladimirov YA, et al. Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes. Biochim Biophys Acta. 2011;1808(9):2147–55.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Sasaki H, Takada K, Terashima Y, Ekimoto H, Takahashi K, Tsuruo T, et al. Human ovarian cancer cell lines resistant to cisplatin, doxorubicin, and L-phenylalanine mustard are sensitive to delta 7-prostaglandin A1 and delta 12-prostaglandin J2. Gynecol Oncol. 1991;41(1):36–40.CrossRefPubMedGoogle Scholar
  54. 54.
    McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta. 2008;1785(2):96–132.PubMedGoogle Scholar
  55. 55.
    Mohell N, Alfredsson J, Fransson A, Uustalu M, Bystrom S, Gullbo J, et al. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis. 2015;6:e1794.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hoffsten PE, Hunter Jr FE, Gebicki JM, Weinstein J. Formation of "lipid peroxide" under conditions which lead to swelling and lysis of rat liver mitochondria. Biochem Biophys Res Commun. 1962;7:276–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Hunter Jr FE, Gebicki JM, Hoffsten PE, Weinstein J, Scott A. Swelling and lysis of rat liver mitochondria induced by ferrous ions. J Biol Chem. 1963;238:828–35.PubMedGoogle Scholar
  58. 58.
    Olenev VI, Suslova TB, Vladimirov YA. Comparative-study of different types of swelling of rat-liver mitochondria. Stud Biophys. 1976;58(2):147–61.Google Scholar
  59. 59.
    Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A. 2002;99(3):1259–63.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Shiratsuchi A, Osada S, Kanazawa S, Nakanishi Y. Essential role of phosphatidylserine externalization in apoptosing cell phagocytosis by macrophages. Biochem Biophys Res Commun. 1998;246(2):549–55.CrossRefPubMedGoogle Scholar
  61. 61.
    Jiang J, Serinkan BF, Tyurina YY, Borisenko GG, Mi Z, Robbins PD, et al. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic Biol Med. 2003;35(7):814–25.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Basic MedicineM.V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Center for Pharmaceutical Biotechnology and NanomedicineNortheastern UniversityBostonUSA
  3. 3.Federal Research Center: Crystallography and PhotonicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations