Advertisement

Pharmaceutical Research

, Volume 34, Issue 6, pp 1193–1203 | Cite as

Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer

  • Nahidah Ibrahim HammadiEmail author
  • Yusuf Abba
  • Mohd Noor Mohd Hezmee
  • Intan Shameha Abdul Razak
  • Alhaji Zubair Jaji
  • Tijani Isa
  • Saffanah Khuder Mahmood
  • Md Zuki Abu Bakar ZakariaEmail author
Research Paper

Abstract

Purpose

Here, we explored the formulation of a calcium carbonate nanoparticle delivery system aimed at enhancing docetaxel (DTX) release in breast cancer.

Methods

The designed nano- anticancer formulation was characterized thorough X-ray diffraction (XRD), Fourier transformed infrared (FTIR), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) and Brunauer-Emmett-Teller (BET) methods. The nano- anticancer formulation (DTX- CaCO3NP) was evaluated for drug delivery properties thorough in vitro release study in human body simulated solution at pH 7.4 and intracellular lysosomal pH 4.8.

Results

Characterization revealed the successful synthesis of DTX- CaCO3NP, which had a sustained release at pH 7.4. TEM showed uniformly distributed pleomorphic shaped pure aragonite particles. The highest entrapment efficiency (96%) and loading content (11.5%) were obtained at docetaxel to nanoparticles ratio of 1:4. The XRD patterns revealed strong crystallizations in all the nanoparticles formulation, while FTIR showed chemical interactions between the drug and nanoparticles with negligible positional shift in the peaks before and after DTX loading. BET analysis showed similar isotherms before and after DTX loading. The designed DTX- CaCO3NP had lower (p < 0.05) cytotoxity against MCF-7 cells than DTX at 24 h but comparable (p > 0.05) effects at 48 h and 72 h. However, the DTX- CaCO3NP released less than 80% of bond DTX at 48 and 72 h but showed comparable effects with free DTX.

Conclusions

The results showed that the developed DTX- CaCO3NP released DTX slower at pH 7.4 and had comparable cytotoxicity with free DTX at 48 and 72 h in MCF-7 cells.

Key Words

breast cancer cancer therapy cockle shell- derived calcium carbonate nanoparticles drug delivery nano- anticancer 

Abbreviations

BET

Brunauer-Emmett-Teller

CaCO3

Calcium carbonate

CaCO3NP

Calcium carbonate nanoparticle

DMSO

Dimethylsulfoxide

DTX

Docetaxel

DTX- CaCO3NP

Docetaxel calcium carbonate nanoparticle formulation

EE

Encapsulation efficiency

FESEM

Field emission scanning electron microscopy

FTIR

Fourier transformed infrared

MTT

3-[4, 5- dimethylthiazol-2-yl]-3, 5-diphenyl tetrazolium bromide dye

NP

Nanoparticle

RPMI

Rosewell park memorial institute medium

TEM

Transmission electron microscopy

XRD

X-ray diffraction

Notes

Acknowledgments and Disclosures

The authors are grateful for funding from Universiti Putra Malaysia Postgraduate Grant Scheme, (GP/ IPS/ 2014/ 9,440,300). The authors declare no conflict of interest.

Data Availability

All raw data are available on request from Dr. NIH.

References

  1. 1.
    Sanna V, Roggio AM, Posadino AM, Cossu A, Marceddu S, Mariani A, Alzari V, Uzzau S, Pintus G, Sechi M. Novel docetaxel-loaded nanoparticles based on poly (lactide-co-caprolactone) and poly (lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res Lett. 2011;6(1):1–9.CrossRefGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefPubMedGoogle Scholar
  3. 3.
    Sánchez-Moreno P, Boulaiz H, Ortega-Vinuesa JL, Peula-García JM, Aránega A. Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells. Int J Mol Sci. 2012;13(4):4906–19.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Verma S, Lavasani S, Mackey J, Pritchard K, Clemons M, Dent S, Latreille J, Lemieux J, Provencher L, Verma S. Optimizing the management of HER2-positive early breast cancer: the clinical reality. Curr Oncol. 2010;17(4):20.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Group EBCTC. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRefGoogle Scholar
  6. 6.
    Qin Y-Y, Li H, Guo X-J, Ye X-F, Wei X, Zhou Y-H, Zhang X-J, Wang C, Qian W, Lu J. Adjuvant chemotherapy, with or without taxanes, in early or operable breast cancer: a meta-analysis of 19 randomized trials with 30698 patients. PLoS One. 2011;6(11):e26946.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Saifullah BaMZH. Inorganic nanolayers: structure, preparation, and biomedical applications. International Journal Journal of nanomedicine IJNM. 2015;10:24.Google Scholar
  8. 8.
    Diaz MR, Vivas-Mejia PE. Nanoparticles as drug delivery Systems in Cancer Medicine: emphasis on RNAi-containing Nanoliposomes. Pharmaceuticals. 2013;6(11):1361–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1):271–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Kura AU, Hussein MZ, Fakurazi S, Arulselvan P. Layered double hydroxide nanocomposite for drug delivery systems; bio-distribution, toxicity and drug activity enhancement. Chem Cent J. 2014;8(1):1.CrossRefGoogle Scholar
  11. 11.
    Kura AU, Saifullah B, Cheah P-S, Hussein MZ, Azmi N, Fakurazi S. Acute oral toxicity and biodistribution study of zinc-aluminium-levodopa nanocomposite. Nanoscale Res Lett. 2015;10(1):1–11.CrossRefGoogle Scholar
  12. 12.
    Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, Zakaria ZAB. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system. Biomed Res Int. 2013;2013Google Scholar
  13. 13.
    Kamba AS, Ismail M, Ibrahim TAT, Zakaria ZAB. Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara Granosa). J Nanomater. 2013;2013:5.Google Scholar
  14. 14.
    Islam KN, Bakar MZBA, Noordin MM, Hussein MZB, Rahman NSBA, Ali ME. Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara Granosa). Powder Technol. 2011;213(1):188–91.CrossRefGoogle Scholar
  15. 15.
    Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TAT, Zakaria ZAB. In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules. 2013;18(9):10580–98.CrossRefPubMedGoogle Scholar
  16. 16.
    Islam KN, Bakar MZBA, Ali ME, Hussein MZB, Noordin MM, Loqman M, Miah G, Wahid H, Hashim U. A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technol. 2013;235:70–5.CrossRefGoogle Scholar
  17. 17.
    Islam KN, Zuki A, Ali M, Hussein MZB, Noordin M, Loqman M, Wahid H, Hakim M, Hamid SBA. Facile synthesis of calcium carbonate nanoparticles from cockle shells. J Nanomater. 2012;2012:2.CrossRefGoogle Scholar
  18. 18.
    Fang G, Tang B, Liu Z, Gou J, Zhang Y, Xu H, Tang X. Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: in vitro characteristics and in vivo performance. Eur J Pharm Sci. 2014;60:1–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Isa T, Zakaria ZAB, Rukayadi Y, Mohd Hezmee MN, Jaji AZ, Imam MU, Hammadi NI, Mahmood SK. Antibacterial activity of ciprofloxacin-encapsulated cockle shells calcium carbonate (aragonite) nanoparticles and its biocompatability in macrophage J774A. Int J Mol Sci. 2016;17(5):713.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sheetal M. A simple ultraviolet spectrophotometric method for the estimation of docetaxel in bulk drug and formulation. A J Pharm Anal. 2013;3(2):48–52.Google Scholar
  21. 21.
    Kim BJ, Min KH, Hwang GH, Lee HJ, Jeong SY, Kim E-C, Lee SC. Calcium carbonate-mineralized polymer nanoparticles for pH-responsive robust nanocarriers of docetaxel. Macromol Res. 2015;23(1):111–7.CrossRefGoogle Scholar
  22. 22.
    Trebuňová M, Laputková G, Géci I, Andrašina I, Sabo J. Enhancement of docetaxel-treated MCF-7 cell death by 900-MHz radiation. Cent Eur J Biol. 2013;8(4):357–65.Google Scholar
  23. 23.
    Shafiu KA, Ismail M, Tengku Ibrahim TA, ZAB Z, Hassan Gusau L. In Vitro Ultrastructural Changes of MCF-7 for Metastasise Bone Cancer and Induction of Apoptosis via Mitochondrial Cytochrome C Released by CaCO 3/Dox Nanocrystals. Biomed Res Int. 2014;2014Google Scholar
  24. 24.
    Miller ML, Andringa A, Dixon K, Carty MP. Insights into UV-induced apoptosis: ultrastructure, trichrome stain and spectral imaging. Micron. 2002;33(2):157–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Nagda C, Chotai N, Patel S, Soni T, Patel U. Preparation and in vitro evaluation of bioadhesive microparticulate system. Intern J Pharm Sci Nanotechnol. 2008;1(3):257–66.Google Scholar
  26. 26.
    Feng L, Wu H, Ma P, Mumper RJ, Benhabbour SR. Development and optimization of oil-filled lipid nanoparticles containing docetaxel conjugates designed to control the drug release rate in vitro and in vivo. Int J Nanomedicine. 2011;6:2545.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Youm I, Bazzil JD, Otto JW, Caruso AN, Murowchick JB, Youan B-BC. Influence of surface chemistry on cytotoxicity and cellular uptake of nanocapsules in breast cancer and phagocytic cells. AAPS J. 2014;16(3):550–67.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Saidykhan L, Bakar MZBA, Rukayadi Y, Kura AU, Latifah SY. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomedicine. 2016;11:661.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci. 2006;61(3):1027–40.CrossRefGoogle Scholar
  30. 30.
    Wang J, Chen J-S, Zong J-Y, Zhao D, Li F, Zhuo R-X, Cheng S-X. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. J Phys Chem C. 2010;114(44):18940–5.CrossRefGoogle Scholar
  31. 31.
    Oh KS, Kim K, Yoon BD, Lee HJ, Park DY, Kim E-y, Lee K, Seo JH, Yuk SH. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy. Int J Nanomedicine. 2016;11:1077.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Das S, Banerjee R, Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005;18(2):203–12.Google Scholar
  33. 33.
    Mao Z, Ma L, Gao C, Shen J. Preformed microcapsules for loading and sustained release of ciprofloxacin hydrochloride. J Control Release. 2005;104(1):193–202.CrossRefPubMedGoogle Scholar
  34. 34.
    Li Y, Jin M, Shao S, Huang W, Yang F, Chen W, Zhang S, Xia G, Gao Z. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model. BMC Cancer. 2014;14(1):329.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Singh SK, Banala VT, Gupta GK, Verma A, Shukla R, Pawar VK, Tripathi P, Mishra PR. Development of docetaxel nanocapsules for improving in vitro cytotoxicity and cellular uptake in MCF-7 cells. Drug Dev Ind Pharm. 2015;41(11):1759–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang T, Petrenko VA, Torchilin VP. Paclitaxel-loaded polymeric micelles modified with MCF-7 cell-specific phage protein: enhanced binding to target cancer cells and increased cytotoxicity. Mol Pharm. 2010;7(4):1007–14.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nahidah Ibrahim Hammadi
    • 1
    Email author
  • Yusuf Abba
    • 2
  • Mohd Noor Mohd Hezmee
    • 1
  • Intan Shameha Abdul Razak
    • 1
  • Alhaji Zubair Jaji
    • 1
  • Tijani Isa
    • 3
  • Saffanah Khuder Mahmood
    • 1
  • Md Zuki Abu Bakar Zakaria
    • 1
    Email author
  1. 1.Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine,Universiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Veterinary Pathology and Microbiology Faculty of Veterinary Medicine,Universiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Microbiology, Faculty of ScienceUniversity of MaiduguriMaiduguriNigeria

Personalised recommendations