Pharmaceutical Research

, Volume 34, Issue 5, pp 1134–1146

Evaluation of the ROS Inhibiting Activity and Mitochondrial Targeting of Phenolic Compounds in Fibroblast Cells Model System and Enhancement of Efficiency by Natural Deep Eutectic Solvent (NADES) Formulation

  • Erwann Durand
  • Jérôme Lecomte
  • Rashmi Upasani
  • Béatrice Chabi
  • Christelle Bayrasy
  • Bruno Baréa
  • Elodie Jublanc
  • Martyn J. Clarke
  • David J. Moore
  • Jonathan Crowther
  • Chantal Wrutniak-Cabello
  • Pierre Villeneuve
Research Paper

Abstract

Purpose

Many phenolics have already been tested for their antioxidant activities using in vitro methods. However, such assays do not consider the complexity of real cellular systems, and most of the phenolics characterized with such assays shows disappointing results when evaluated in cells. Accordingly, there is a need to develop effective screening methods.

Methods

Antioxidants were first evaluated by CAT assay and then, evaluated for their ability (i) to reduce the level of ROS using fluorescent probe, (ii) to cross fibroblast cell membranes using confocal microscopy, and (iii) to target mitochondria. Antioxidants were also formulated in NADES.

Results

Correlation was obtained when comparing CAT results with short term inhibition (2 h) in the fibroblast cells. On the contrary, it was difficult to anticipate ROS inhibiting efficiency at long term (24 h) from both the CAT assay and the short term inhibition measurements. Indeed, some molecules displayed activity rapidly but lost it over time. In contrast, other molecules were better for long term. The comparable efficiency at long term of Bis-Ethylhexyl Hydroxydimethoxy Benzylmalonate (Bis-EHBm) and decyl rosmarinate, prompted us to further investigate the potential mitochondrial targeting of the former. Using mitochondrial probes, our results confirmed its mitochondrial location. Finally, the formulation of antioxidants in NADES could greatly improve their activity.

Conclusions

Combinations of fast acting and slow acting molecules could be promising strategies to identify a performant antioxidant system. Bis-EHBm behaves as decyl rosmarinate with a confirmed mitochondrial location. Finally, the formulation of antioxidants in NADES could greatly improve their activity for ROS inhibition.

KEY WORDS

antioxidants mitochondrial targeting natural deep eutectic solvents reactive oxygen species 

Abbreviations

AAPH

2,2’-azobis(2-amidinopropane) dihydrochloride

AUC

Area under the curve

Bis-EHBm

Bis-Ethylhexyl Hydroxydimethoxy Benzylmalonate

CAT assay

Conjugated autooxidizable triene assay

ChCl

Choline chloride

CR-6

3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran

DES

Deep eutectic solvent

DMEM

Dulbecco’s modified Eagle’s medium

DNA

Deoxyribonucleic acid

H2DCF-DA

2’,7’-dichlorodihydrofluorescein diacetate

LDL

Low density lipoproteins

NADES

Natural deep eutectic solvent

PBS

Phosphate buffer solution

ROS

Reactive oxygen species

TAG

Triacylglycerol

References

  1. 1.
    Visioli F, De La Lastra CA, Andres-Lacueva C, et al. Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr. 2011;51(6):524–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Corder R, Mullen W, Khan NQ, et al. Oenology: Red wine procyanidins and vascular health. Nature. 2006;444(7119):566.CrossRefPubMedGoogle Scholar
  3. 3.
    Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012;65(6):565–76.CrossRefGoogle Scholar
  4. 4.
    Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75(2):199–212.CrossRefGoogle Scholar
  5. 5.
    Harman D. Free radical theory of aging. Mutat Res. 1992;275(7):257–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med. 2002;32(12):1264–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Olinski R, Siomek A, Rozalski R, et al. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim Pol. 2007;54(1):11–26.PubMedGoogle Scholar
  8. 8.
    El Gharras H. Polyphenols: food sources, properties and applications - a review. Int J Food Sci Technol. 2009;44(12):2512–8.CrossRefGoogle Scholar
  9. 9.
    Laguerre M, Lecomte J, Villeneuve P. Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res. 2007;46(5):244–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Lenaz G, Genova ML. Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol. 2009;41(10):1750–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283(5407):1482–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev. 2000;41(2):235–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Edeas M. Strategies to target mitochondria and oxidative stress by antioxidants: key points and perspectives. Pharm Res. 2011;28:2771–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Frankel EN, Meyer AS. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric. 2000;80(13):1925–41.CrossRefGoogle Scholar
  17. 17.
    Teresa Satué-Gracia M, Heinonen M, Frankel EN. Anthocyanins as antioxidants on human low-density lipoprotein and lecithin − liposome systems. J Agric Food Chem. 1997;45(9):3362–7.CrossRefGoogle Scholar
  18. 18.
    Tsuchiya M, Asada A, Maeda K, et al. Propofol versus midazolam regarding their antioxidant activities. Am J Respir Crit Care Med. 2001;163(1):26–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Grandemange S, Seyer P, Carazo A, et al. Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res. 2005;65(10):4282–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Laguerre M, Wrutniak-Cabello C, Chabi B, et al. Does hydrophobicity always enhance antioxidant drugs? A cut-off effect of the chain length of functionalized chlorogenate esters on ROS-overexpressing fibroblasts. J Pharm Pharmacol. 2011;63(4):531–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Bayrasy C, Chabi B, Laguerre M, et al. Boosting antioxidants by lipophilization: a strategy to increase cell uptake and target mitochondria. Pharm Res. 2013;30(8):1979–89.CrossRefPubMedGoogle Scholar
  22. 22.
    Laguerre M, López-Giraldo LJ, Lecomte J, et al. Conjugated autoxidizable triene (CAT) assay: a novel spectrophotometric method for determination of antioxidant capacity using triacylglycerol as ultraviolet probe. Anal Biochem. 2008;380(2):282–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Choi YH, van Spronsen J, Dai Y, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011;156(4):1701–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Durand E, Lecomte J, Villeneuve P. From green chemistry to nature: the versatile role of low transition temperature mixtures. Biochimie. 2016;120:119–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126(29):9142–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114(21):11060–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Durand E, Lecomte J, Villeneuve P. Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur J Lipid Sci Technol. 2013;115(4):379–85.CrossRefGoogle Scholar
  28. 28.
    Radošević K, Ćurko N, Srček VG, et al. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT - Food Sci Technol. 2016;73:45–51.CrossRefGoogle Scholar
  29. 29.
    Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013;766:61–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem. 2012;47(12):2081–9.CrossRefGoogle Scholar
  31. 31.
    Durand E, Lecomte J, Baréa B, Dubreucq E, Lortie R, Villeneuve P. Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem. 2013;15:2275.CrossRefGoogle Scholar
  32. 32.
    Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun (Camb). 2008;10(10):1235–42.CrossRefGoogle Scholar
  33. 33.
    Dai Y, Verpoorte R, Choi YH. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014;159:116–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015;187:14–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Zakrewsky M, Lovejoy KS, Kern TL, et al. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci. 2014;111(37):13313–21.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zakrewsky M, Banerjee A, Apte S, et al. Choline and geranate deep eutectic solvent as a broad-spectrum antiseptic agent for preventive and therapeutic applications. Adv Healthc Mater. 2016;5:1282–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Lecomte J, Lopez Giraldo LJ, Laguerre M, Baréa B, Villeneuve P. Synthesis, characterization and free radical scavenging properties of rosmarinic acid fatty esters. J Am Oil Chem Soc. 2010;87(6):615–20.CrossRefGoogle Scholar
  38. 38.
    Sørensen AM, Durand E, Bayrasy C, Lecomte J, Villeneuve P, Jacobsen C. Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates. J Agric Food Chem. 2014;62(52):12553–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Laguerre M, López Giraldo LJ, Lecomte J, et al. Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters. J Agric Food Chem. 2010;58(5):2869–76.CrossRefPubMedGoogle Scholar
  40. 40.
    Laguerre M, Bayrasy C, Panya A, et al. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr. 2015;55(2):183–201.CrossRefPubMedGoogle Scholar
  41. 41.
    Durand E, Bayrasy C, Laguerre M, et al. Regioselective synthesis of diacylglycerol rosmarinates and evaluation of their antioxidant activity in fibroblasts. Eur J Lipid Sci Technol. 2015;117(8):1159–70.CrossRefGoogle Scholar
  42. 42.
    Mateos R, Pereira-Caro G, Saha S, et al. Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers. Food Chem. 2011;125(3):865–72.CrossRefGoogle Scholar
  43. 43.
    Brisson L, Castan S, Fontbonne H, Nicoletti C, Puigserver A, Ajandouz EH. Alpha-tocopheryl acetate is absorbed and hydrolyzed by Caco-2 cells comparative studies with alpha-tocopherol. Chem Phys Lipids. 2008;154(1):33–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Juhasz B, Mukherjee S, Das DK. Hormetic response of resveratrol against cardioprotection. Exp Clin Cardiol. 2010;15(4):134–8.Google Scholar
  45. 45.
    Cho SJ, Jung UJ, Choi MS. Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr. 2012;108(12):2166–75.CrossRefPubMedGoogle Scholar
  46. 46.
    Smith RAJ, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci. 2003;100(9):5407–12.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279(33):34682–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. Mitochondria-penetrating peptides. Chem Biol. 2008;15(4):375–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Rozema E, van Dam AD, Sips HCM, et al. Extending pharmacological dose–response curves for salsalate with natural deep eutectic solvents. RSC Adv. 2015;5(75):61398–401.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Erwann Durand
    • 1
  • Jérôme Lecomte
    • 1
  • Rashmi Upasani
    • 2
  • Béatrice Chabi
    • 3
  • Christelle Bayrasy
    • 1
  • Bruno Baréa
    • 1
  • Elodie Jublanc
    • 3
  • Martyn J. Clarke
    • 2
  • David J. Moore
    • 2
  • Jonathan Crowther
    • 4
  • Chantal Wrutniak-Cabello
    • 3
  • Pierre Villeneuve
    • 1
  1. 1.CIRAD, UMR Ingénierie des Agropolymères et Technologies ÉmergentesMontpellierFrance
  2. 2.GSK Consumer Healthcare, Skin Health R&DRTPUSA
  3. 3.INRA, UMR DMEMMontpellierFrance
  4. 4.GSK Consumer Healthcare Skin HealthGSK HouseBrentfordUK

Personalised recommendations