Pharmaceutical Research

, Volume 34, Issue 5, pp 1093–1103 | Cite as

Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating

  • Cristina FornagueraEmail author
  • Natàlia Feiner-Gracia
  • Aurora Dols-Perez
  • Maria José García-Celma
  • Conxita Solans
Research Paper



Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity.


In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles.


Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration.


Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles.

Graphical Abstract

Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating


AuNP-loaded polymeric nanoparticles nano-emulsion templating novel imaging systems phase inversion composition (PIC) emulsification method) polymeric nanoparticles 



Gold nanoparticles


Cetyltrimethylammonium bromide


Dynamic light scattering


AuNP-loaded nano-emulsions


AuNP-loaded PLGA nanoparticles


Phase inversion composition method


Poly(lactide-co-glycolic acid)


Reticuloendothelial system


Tetraoctylammonium bromide



Financial support from MINECO (grants CTQ2014-52687-C3-1-P and CTQ2016-80645-R); Generalitat de Catalunya (grant 2014-SGR-1655), and CIBER-BBN are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Cristina Fornaguera is grateful to AGAUR for their Predoctoral Fellowship (grant FI-DGR 2012). Natàlia Feiner is grateful to CIBER-BBN for their Research Initiation Fellowship.

Supplementary material

11095_2017_2119_MOESM1_ESM.docx (197 kb)
ESM 1 (DOCX 196 kb)


  1. 1.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Tadros TF, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 2004;108–109:303–18.CrossRefPubMedGoogle Scholar
  3. 3.
    Pinto RC, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8–21.CrossRefGoogle Scholar
  4. 4.
    Kreuter J. Nanoparticles as drug delivery systems, encyclopedia of nanoscience and nanotechnology, edited by Singh Nawla H. Am Sci Publ. 2004;7:161–80.Google Scholar
  5. 5.
    Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex diseases. Pharm Res. 2006;23(7):1417–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Del Rev. 2012;64:1394–416.CrossRefGoogle Scholar
  7. 7.
    Klang Sh, Benita S. Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration, Submicron emulsions in drug targeting and delivery, edited by Simon Benita. Ciutat. 1998;119–152.Google Scholar
  8. 8.
    Tamilvanan S. Oil-in-water lipid emulsions: Implications for parenteral and ocular delivering systems. Prog Lipid Res. 2004;43:489–533.CrossRefPubMedGoogle Scholar
  9. 9.
    Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26(5):1025–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine. 2010;5(10):1595–616.CrossRefPubMedGoogle Scholar
  11. 11.
    Neha B, Ganesh B, Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci. 2013;2(3):107–32.CrossRefGoogle Scholar
  12. 12.
    Teixera Z, Dreiss CA, Lawrence M, Heenan RK, Mahcado D, Justo GZ, et al. Retinyl palmitate polymeric nanocapsules as carriers of bioactives. J Colloid Interface Sci. 2012;382:36–47.CrossRefGoogle Scholar
  13. 13.
    Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications, drug target insights. Libr Acad. 2007;2:147–57.Google Scholar
  14. 14.
    Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;64:316–26.CrossRefGoogle Scholar
  15. 15.
    Cook RO, Pannu RK, Kellaway IW. Novel sustained release microspheres for pulmonary drug delivery. J Control Release. 2005;104(1):79–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;64:24–36.CrossRefGoogle Scholar
  17. 17.
    Gupta MK, Prakash D, Mishra B. Biodegradable microparticulate drug delivery system of diltiazem HCl. Braz J Pharm Sci. 2012;48(4):699–709.CrossRefGoogle Scholar
  18. 18.
    Hayat MA. Colloidal gold: principles, methods and applications. Academic Press, Inc.; 1989.Google Scholar
  19. 19.
    Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Puerto MM. Controlled synthesis of uniform magnetic nanocrystals with high-quality properties for biomedical applications. J Mater Chem. 2012;22:21065–75.CrossRefGoogle Scholar
  20. 20.
    Jiang S, Eltoukhy AA, Love KT, Langer RE, Anderson DG. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett. 2013;13(3):1059–64.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Khlebtsov N, Dykmana L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.CrossRefPubMedGoogle Scholar
  24. 24.
    Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res. 2008;41(12):1721–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Watson KJ, Zhu J, Nguyen ST, Mirkin CA. Hybrid nanoparticles with block copolymer shell structures. J Am Chem Soc. 1999;121:462–3.CrossRefGoogle Scholar
  27. 27.
    Solans C, Solè I. Nano-emulsions: Formation by low-energy methods. Curr Opin Colloid Interface Sci. 2012;17:246–54.CrossRefGoogle Scholar
  28. 28.
    Fornaguera C, Dols-Perez A, Calderó G, García-Celma MJ, Camarasa J, Solans C. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release. 2015;211:134–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng W, Wang E. Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic Interaction. J Phys Chem B. 2004;108(1):24–6.CrossRefGoogle Scholar
  30. 30.
    Joshi CP, Bigioni TP. Model for the phase transfer of nanoparticles using ionic surfactants. Langmuir. 2014;30(46):13837–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Fornaguera C, Grijalvo S, Galán M, Fuentes-Paniagua E, de la Mata FJ, Gómez R, et al. Novel non-viral gene delivery systems composed of carbosilane dendron functionalized nanoparticles prepared from nano-emulsions as non-viral carriers for antisense oligonucleotides. Int J Pharm. 2015;478(1):113–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Calderó G, García-Celma MJ, Solans C. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J Colloid Interface Sci. 2011;353:406–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir. 1994;10(10):3427–30.CrossRefGoogle Scholar
  34. 34.
    Liz-Marzaán LM, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir. 1996;12:4329–35.CrossRefGoogle Scholar
  35. 35.
    Chen S, Yao H, Kimura K. Reversible transference of Au nanoparticles across the water and toluene interface: a langmuir type adsorption mechanism. Langmuir. 2001;17(3):733–9.CrossRefGoogle Scholar
  36. 36.
    Fotakis G, Timbrell JA. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to calcium chloride. Toxicol Lett. 2006;160:171–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Fendler JH Meldrum FC. The colloid chemical approach to nanostructured materials. Adv Mater. 1995;7(7):607–32.CrossRefGoogle Scholar
  38. 38.
    Wretlind AJ. The pharmacological basis for the use of fat emulsions in intravenous nutrition. Acta Chir Scand Suppl. 1964;325:31–41.Google Scholar
  39. 39.
    Dobrovolskaia MA, McNeil S. Handbook of immunological properties of engineered nanomaterials, Frontiers in Nanobiomedical esearch, SAIC-Frederick, Inc.: USA; 2013.Google Scholar
  40. 40.
    Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv Drug Deliv Rev. 2014;71:2–14.CrossRefPubMedGoogle Scholar
  41. 41.
    Fornaguera C, Caldero G, Solans C. Electrolytes as a tuning parameter to control nano-emulsion and nanoparticle size. RSC Adv. 2016;6:58203–11.CrossRefGoogle Scholar
  42. 42.
    Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release. 2008;128:185–99.CrossRefPubMedGoogle Scholar
  43. 43.
    Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci. 1973;241:20–2.CrossRefGoogle Scholar
  44. 44.
    Lim ZJ, Li JJ, Ng CT, Yung LL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32:983–90. doi: 10.1038/aps.2011.82. Published online 11 Jul 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Voigt N, Henrich-Noacl C, Kocckentiedt S, Hintz W, Tomas J, Sabel BA. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res. 2014;16:2379–92.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–79.CrossRefPubMedGoogle Scholar
  48. 48.
    Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. London: Pharmaceutical-Press; 2006.Google Scholar
  49. 49.
    Schärtl W. Light scattering from polymer solutions and nanoparticle dispersions, Springer laboratory, ed. Pasch H.; 2006p. 22. ISBN: 978-3-540-71951.Google Scholar
  50. 50.
    Delgado AV, González-Caballero F, Hunter RJ, Koopal LK. Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci. 2007;309:194–224.CrossRefPubMedGoogle Scholar
  51. 51.
    Putnam D, Gentry CA, Pack DW, Langer R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. PNAS. 2001;98(3):1200–5.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hansen MB, Nielsen SG, Berk K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119(2):203–10.CrossRefPubMedGoogle Scholar
  53. 53.
    Aparicio RM, García-Celma MJ, Vinardell MP, Mitjans M. In vitro studies of the hemolytic activity of microemulsions in human erythrocytes. J Pharm Biomed Anal. 2005;39:1063–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)BarcelonaSpain
  2. 2.CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)BarcelonaSpain
  3. 3.Department of Pharmacy and Pharmaceutical TechnologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations