Pharmaceutical Research

, Volume 34, Issue 5, pp 941–956 | Cite as

The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments

  • Anran Hu
  • Chen Chen
  • Michael D. MantleEmail author
  • Bettina Wolf
  • Lynn F. Gladden
  • Ali Rajabi-Siahboomi
  • Shahrzad Missaghi
  • Laura Mason
  • Colin D. Melia
Research Paper



Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths.


The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media.


Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data.


Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.


confocal fluorescence microscopy digital imaging dissolution HPMC hydrophilic matrix MRI PEO polymer mixtures 



Hydroxypropyl methylcellulose


Magnetic resonance imaging


Polyethylene oxide



Yewande Oni from University of Nottingham.


  1. 1.
    Timmins P, Pygall SR, Melia CD. Hydrophilic matrix tablets for oral controlled release. AAPS advances in pharmaceutical sciences series. New York: Springer; 2014. p. 17–51.Google Scholar
  2. 2.
    Harland RS, Garzzaniga A, Sangalli ME, Colombo P, Peppas NA. Drug polymer matrix swelling and dissolution. Pharm Res. 1988;5(8):488–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Colombo P, Bettini R, Massimo G, Catellani PL, Santi P, Peppas NA. Drug diffusion front movement is important in drug-release control from swellable matrix tablets. J Pharm Sci. 1995;84(8):991–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behavior, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3:198–204.CrossRefPubMedGoogle Scholar
  5. 5.
    Korner A, Larsson A, Andersson A, Piculell L. Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities. J Pharm Sci. 2010;99(3):1225–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Modi SA, Gaikwad PD, Bankar VH, Pawar SP. Sustained release drug delivery system: a review. Int J Pharma Res Dev Online. 2011;2.Google Scholar
  7. 7.
    Leskinen JT, Hakulinen MA, Kuosmanen M, Ketolainen J, Abrahmsén-Alami S, Lappalainen R. Monitoring of swelling of hydrophilic polymer matrix tablets by ultrasound techniques. Int J Pharm. 2011;404(1-2):142–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of additives on the cloud point, disintegration and dissolution of hydroxypropylmethylcellulose gels and matrix tablets. Int J Pharm. 1990;66(1-3):233–42.CrossRefGoogle Scholar
  9. 9.
    Williams HD, Ward R, Hardy IJ, Melia CD. The effect of sucrose and salts in combination on the drug release behaviour of an HPMC matrix. Eur J Pharm Biopharm. 2010;76(3):433–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Williams HD, Ward R, Hardy IJ, Melia CD. The extended release properties of HPMC matrices in the presence of dietary sugars. J Control Release. 2009;138(3):251–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Herbert L, Lordi NG. Some factors affecting the release of a water-soluble drug from a compressed hydrophilic matrix. J Pharm Sci. 1966;55(8):840–3.CrossRefGoogle Scholar
  12. 12.
    Bajwa GS, Hoebler K, Sammon C, Timmins P, Melia CD. Microstructural imaging of early gel layer formation in HPMC matrices. J Pharm Sci. 2006;95(10):2145–57.CrossRefPubMedGoogle Scholar
  13. 13.
    RajabiSiahboomi AR, Bowtell R, Mansfield P, Melia CD. Structure and behavior in hydrophilic matrix sustained release dosage forms .4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm Res. 1996;13(3):376–80.CrossRefGoogle Scholar
  14. 14.
    Royce AE. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms. 1993: USA.Google Scholar
  15. 15.
    Kim CJ. Drug release from compressed hydrophilic polyox® WSR tablets. J Pharm Sci. 1995;84(3):303–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim CJ. Effects of drug solubility, drug loading, and polymer molecular weight on drug release from polyox (R) tablets. Drug Dev Ind Pharm. 1998;24(7):645–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Maggi L, Bruni R, Conte U. High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms. Int J Pharm. 2000;195(1–2):229–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Turner S, Hite M, Fassihi R. Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin. Drug Dev Ind Pharm. 2004;30(8):797–807.CrossRefPubMedGoogle Scholar
  19. 19.
    Wray PS, Clarke GS, Kazarian SG. Dissolution of tablet-in-tablet formulations studied with ATR-FTIR spectroscopic imaging. Eur J Pharm Sci. 2013;48(4–5):748–57.CrossRefPubMedGoogle Scholar
  20. 20.
    Jayan A. Investigating the drug release mechanisms of mixed HPMC/PEO hydrophilic matrices, in University of Nottingham 2001, University of Nottingham University of Nottingham.Google Scholar
  21. 21.
    Gusler G, Mei-Chau P. Optimal polymer mixtures for gastric retentive tablets, U.S. Patent, 2004: USA.Google Scholar
  22. 22.
    Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.CrossRefGoogle Scholar
  23. 23.
    Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2–3):139–57.CrossRefPubMedGoogle Scholar
  24. 24.
    Wong EB. Partially pregelatinized starch as an excipient in HPMC matrices, in school of pharmacy 2009, University of Nottingham University of Nottingham.Google Scholar
  25. 25.
    Viriden A, Larsson A, Schagerlöf H, Wittgren B. Model drug release from matrix tablets composed of HPMC with different substituent heterogeneity. Int J Pharm. 2010;401(1–2):60–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen YY, Hughes LP, Gladden LF, Mantle MD. Quantitative ultra-fast MRI of HPMC swelling and dissolution. J Pharm Sci. 2010;99(8):3462–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Q, Gladden L, Avalle P, Mantle M. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin in Lescol(R) XL tablets in a USP-IV dissolution cell. J Control Release. 2011;156(3):345–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Shiko G, Gladden LF, Sederman AJ, Connolly PC, Butler JM. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell. J Pharm Sci. 2011;100(3):976–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Colombo P, Bettini R, Santi P, De Ascentiis A, Peppas NA. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J Control Release. 1996;39(2–3):231–7.CrossRefGoogle Scholar
  30. 30.
    Hino T, Ford JL. Effect of nicotinamide on the properties of aqueous HPMC solutions. Int J Pharm. 2001;226(1–2):53–60.CrossRefPubMedGoogle Scholar
  31. 31.
    Rajabi-Siahboomi AR. Hydroxypropylmethylcellulose in hydrophilic matrix dosage forms, in school of pharmacy. 1993, University of Nottingham: Nottingham.Google Scholar
  32. 32.
    McCrystal CB, Ford JL, Rajabi-Siahboomi AR. Water distribution studies within cellulose ethers using differential scanning calorimetry. 1. Effect of polymer molecular weight and drug addition. J Pharm Sci. 1999;88(8):792–6.CrossRefPubMedGoogle Scholar
  33. 33.
    McCrystal CB, Ford JL, Rajabi-Siahboomi AR. Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. Effect of polymer substitution type and drug addition. J Pharm Sci. 1999;88(8):797–801.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu SQ, Joshi SC, Lam YC. Effects of salts in the hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. J Appl Polym Sci. 2008;109(1):363–72.CrossRefGoogle Scholar
  35. 35.
    Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861–905.CrossRefGoogle Scholar
  36. 36.
    Florin E, Kjellander R, Eriksson JC. Salt effects on the cloud point of the poly(ethylene oxide) + water-system. J Chem Soc Faraday Trans 1. 1984;80:2889–910.CrossRefGoogle Scholar
  37. 37.
    Rajabi-Siahboomi AR, Levina M, Farrell TP, Palmer D. The influence of hydro-alcoholic media on drug release. Pharm Technol. 2011;35(7).Google Scholar
  38. 38.
    Lopes J, Pinto J, Costa P. Compressed matrix core tablet as a quick/slow dual-component delivery system containing ibuprofen. AAPS PharmSciTech. 2007;8(3):E76.CrossRefPubMedGoogle Scholar
  39. 39.
    Melia CD, Rajabi-Siahboomi AR, Bowtell RW. Magnetic resonance imaging of controlled release pharmaceutical dosage forms. Pharm Sci Technol Today. 1998;1(1):32–9.CrossRefGoogle Scholar
  40. 40.
    Missaghi S, Patel P, Farrell TP, Huatan H, Rajabi-Siahboomi AR. Investigation of critical core formulation and process parameters for osmotic pump oral drug delivery. AAPS PharmSciTech. 2014;15(1):149–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Mirza ML, Iqbal J, Aziz H. Sorption of Congo red on cellulose. J Chem Soc Pak. 1996;18(3):233–6.Google Scholar
  42. 42.
    Williams HD, Ward R, Culy A, Hardy IJ, Melia CD. Designing HPMC matrices with improved resistance to dissolved sugar. Int J Pharm. 2010;401(1–2):51–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anran Hu
    • 1
  • Chen Chen
    • 2
  • Michael D. Mantle
    • 2
    Email author
  • Bettina Wolf
    • 3
  • Lynn F. Gladden
    • 2
  • Ali Rajabi-Siahboomi
    • 4
  • Shahrzad Missaghi
    • 4
  • Laura Mason
    • 1
  • Colin D. Melia
    • 1
  1. 1.Formulation InsightsSchool of PharmacyNottinghamUK
  2. 2.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  3. 3.Food Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
  4. 4.Colorcon Inc., Global HeadquartersHarleysvilleUSA

Personalised recommendations