Advertisement

Pharmaceutical Research

, Volume 33, Issue 12, pp 2904–2919 | Cite as

Vinorelbine Delivery and Efficacy in the MDA-MB-231BR Preclinical Model of Brain Metastases of Breast Cancer

  • Ramakrishna Samala
  • Helen R. Thorsheim
  • Satyanarayana Goda
  • Kunal Taskar
  • Brunilde Gril
  • Patricia S. Steeg
  • Quentin R. SmithEmail author
Research Paper

Abstract

Purpose

To evaluate vinorelbine drug exposure and activity in brain metastases of the human MDA-MB-231BR breast cancer model using integrated imaging and analysis.

Methods

Brain and systemic metastases were created by administration of cancer cells in female NuNu mice. After metastases developed, animals were administered vinorelbine at the maximal tolerated dose (12 mg/kg), and were evaluated thereafter for total and unbound drug pharmacokinetics, biomarker TUNEL staining, and barrier permeability to Texas red.

Results

Median brain metastasis drug exposure was 4-fold greater than normal brain, yet only ~8% of non-barrier systemic metastases, which suggests restricted brain exposure. Unbound vinorelbine tissue/plasma partition coefficient, Kp,uu, equaled ~1.0 in systemic metastases, but 0.03–0.22 in brain metastases, documenting restricted equilibration. In select sub-regions of highest drug-uptake brain metastases, Kp,uu approached 1.0, indicating complete focal barrier breakdown. Most vinorelbine-treated brain metastases exhibited little or no positive early apoptosis TUNEL staining in vivo. The in vivo unbound vinorelbine IC50 for TUNEL-positive staining (56 nM) was 4-fold higher than that measured in vitro (14 nM). Consistent with this finding, P-glycoprotein expression was observed to be substantially upregulated in brain metastasis cells in vivo.

Conclusions

Vinorelbine exposure at maximum tolerated dose was less than one-tenth that in systemic metastases in >70% of brain metastases, and was associated with negligible biomarker effect. In small subregions of the highest uptake brain metastases, compromise of blood-tumor barrier appeared complete. The results suggest that restricted delivery accounts for 80% of the compromise in drug efficacy for vinorelbine against this model.

KEY WORDS

blood–brain barrier brain metastases breast cancer permeability vinorelbine 

ABBREVIATIONS

AUC

Area under the curve

BAT

Brain adjacent to tumor

BBB

Blood–brain barrier

BTB

Blood-tumor barrier

CNS

Central nervous system

fu

Unbound fraction

fu,hd

Unbound fraction in diluted homogenate

Kp

Integrated total drug partition coefficient between tissue and plasma

Kp,uu

Integrated unbound drug partition coefficient between tissue and plasma

PD

Pharmacodynamics

P-gp

P-glycoprotein (ABCB1)

PK

Pharmacokinetics

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by grants from the Department of Defense Breast Cancer Program (W81XWH-06-2-0033) and the Cancer Prevention Research Institute of Texas (RP120489 and RP110786)

Supplementary material

11095_2016_2012_MOESM1_ESM.pdf (411 kb)
ESM 1 (PDF 411 kb)

References

  1. 1.
    Sul J, Posner JB. Brain metastases: epidemiology and pathophysiology. Cancer Treat Res. 2007;136:1–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Rostami R, Mittal S, Rostami P, Tavassoli F, Jabbari B. Brain metastasis in breast cancer: a comprehensive literature review. J Neurooncol. 2016;127(3):407–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta MP, Paleologos NA, Mikkelsen T, Robinson PD, Ammirati M, Andrews DW, et al. The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2010;96(1):71–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Breast Cancer, Version 1.2016. J Natl Compr Canc Netw. 2015;13(12):1475–85.PubMedGoogle Scholar
  5. 5.
    Lin X, DeAngelis LM. Treatment of brain metastases. J Clin Oncol : Off J Am Soc Clin Oncol. 2015;33(30):3475–84.CrossRefGoogle Scholar
  6. 6.
    Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164–77.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell. 2015;107(10):342–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer. 2011;11(5):352–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Parrish KE, Sarkaria JN, Elmquist WF. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin Pharmacol Ther. 2015;97(4):336–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Henry MN, Chen Y, McFadden CD, Simedrea FC, Foster PJ. In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model. Melanoma Res. 2015;25(2):127–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Murrell DH, Hamilton AM, Mallett CL, van Gorkum R, Chambers AF, Foster PJ. Understanding heterogeneity and permeability of brain metastases in murine models of HER2-positive breast cancer through magnetic resonance imaging: implications for detection and therapy. Transl Oncol. 2015;8(3):176–84.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fidler IJ. The biology of brain metastasis: challenges for therapy. Cancer J. 2015;21(4):284–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Leone JP, Leone BA. Breast cancer brain metastases: the last frontier. Exp Hematol Oncol. 2015;4:33.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Levin VA, Tonge PJ, Gallo JM, Birtwistle MR, Dar AC, Iavarone A. CNS anticancer drug discovery and development conference white paper. Neuro Oncol. 2015;17 Suppl 6:vi1–26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res. 2009;26(11):2486–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 2012;29(3):770–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–78.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG, et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 2015;17(2):289–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Galano G, Caputo M, Tecce MF, Capasso A. Efficacy and tolerability of vinorelbine in the cancer therapy. Curr Drug Saf. 2011;6(3):185–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Andersson M, Lidbrink E, Bjerre K, Wist E, Enevoldsen K, Jensen AB, et al. Phase III randomized study comparing docetaxel plus trastuzumab with vinorelbine plus trastuzumab as first-line therapy of metastatic or locally advanced human epidermal growth factor receptor 2-positive breast cancer: the HERNATA study. J Clin Oncol : Off J Am Soc Clin Oncol. 2011;29(3):264–71.CrossRefGoogle Scholar
  21. 21.
    Xu YC, Wang HX, Tang L, Ma Y, Zhang FC. A systematic review of vinorelbine for the treatment of breast cancer. Breast J. 2013;19(2):180–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Omuro AM, Raizer JJ, Demopoulos A, Malkin MG, Abrey LE. Vinorelbine combined with a protracted course of temozolomide for recurrent brain metastases: a phase I trial. J Neurooncol. 2006;78(3):277–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Iwamoto FM, Omuro AM, Raizer JJ, Nolan CP, Hormigo A, Lassman AB, et al. A phase II trial of vinorelbine and intensive temozolomide for patients with recurrent or progressive brain metastases. J Neurooncol. 2008;87(1):85–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Samala R, Kunal T, Thorsheim HR, Lockman PR, Smith QR. Vinorelbine distribution to brain metastases of breast cancer and factors affecting in vivo efficacy. 2012 AAPS Annual Meeting and Exposition October 14-17, 2012; McCormick Place, Chicago IL.Google Scholar
  25. 25.
    Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 2007;67(9):4190–8.CrossRefPubMedGoogle Scholar
  26. 26.
    van Tellingen O, Kuijpers AV, Beijnen JH, Nooijen WJ, Bult A. Plasma pharmacokinetics, tissue disposition, excretion and metabolism of vinorelbine in mice as determined by high performance liquid chromatography. Invest New Drugs. 1993;11(2–3):141–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Kobayashi S, Sakai T, Dalrymple PD, Wood SG, Chasseaud LF. Disposition of the novel anticancer agent vinorelbine ditartrate following intravenous administration in mice, rats and dogs. Arzneimittelforschung. 1993;43(12):1367–77.PubMedGoogle Scholar
  28. 28.
    Kalvass JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos. 2007;35(4):660–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Leveque D, Jehl F. Clinical pharmacokinetics of vinorelbine. Clin Pharmacokinet. 1996;31(3):184–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Krikorian A, Rahmani R, Bromet M, Bore P, Cano JP. Pharmacokinetics and metabolism of Navelbine. Semin Oncol. 1989;16(2 Suppl 4):21–5.PubMedGoogle Scholar
  32. 32.
    Biziota E, Briasoulis E, Mavroeidis L, Marselos M, Harris AL, Pappas P. Cellular and molecular effects of metronomic vinorelbine and 4-O-deacetylvinorelbine on human umbilical vein endothelial cells. Anticancer Drugs. 2016;27(3):216–24.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Varma MV, Sateesh K, Panchagnula R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm. 2005;2(1):12–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, et al. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther. 2007;322(1):205–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Wierzba K, Sugiyama Y, Okudaira K, Iga T, Hanano M. Tubulin as a major determinant of tissue distribution of vincristine. J Pharm Sci. 1987;76(12):872–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Adams DJ, Knick VC. P-glycoprotein mediated resistance to 5′-nor-anhydro-vinblastine (Navelbine). Invest New Drugs. 1995;13(1):13–21.CrossRefPubMedGoogle Scholar
  37. 37.
    Obuchi W, Ohtsuki S, Uchida Y, Ohmine K, Yamori T, Terasaki T. Identification of transporters associated with Etoposide sensitivity of stomach cancer cell lines and methotrexate sensitivity of breast cancer cell lines by quantitative targeted absolute proteomics. Mol Pharmacol. 2013;83(2):490–500.CrossRefPubMedGoogle Scholar
  38. 38.
    Inaba M, Kobayashi T, Tashiro T, Sakurai Y. Pharmacokinetic approach to rational therapeutic doses for human tumor-bearing nude mice. Jpn J Cancer Res. 1988;79(4):509–16.CrossRefPubMedGoogle Scholar
  39. 39.
    Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011;339(2):579–88.CrossRefPubMedGoogle Scholar
  40. 40.
    Fridén M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M. Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos. 2009;37(6):1226–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Fridén M, Bergström F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, et al. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos. 2011;39(3):353–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Ma T, Xue YX. MiRNA-200b regulates RMP7-induced increases in blood-tumor barrier permeability by targeting RhoA and ROCKII. Front Mol Neurosci. 2016;9:9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pitz MW, Desai A, Grossman SA, Blakeley JO. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol. 2011;104(3):629–38.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77(4):491–502.CrossRefPubMedGoogle Scholar
  45. 45.
    Cisternino S, Rousselle C, Dagenais C, Scherrmann JM. Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice. Pharm Res. 2001;18(2):183–90.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang F, Zhou F, Kruh GD, Gallo JM. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro Oncol. 2010;12(10):1043–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lagas JS, Damen CW, van Waterschoot RA, Iusuf D, Beijnen JH, Schinkel AH. P-glycoprotein, multidrug-resistance associated protein 2, Cyp3a, and carboxylesterase affect the oral availability and metabolism of vinorelbine. Mol Pharmacol. 2012;82(4):636–44.CrossRefPubMedGoogle Scholar
  48. 48.
    Johnson DR, Finch RA, Lin ZP, Zeiss CJ, Sartorelli AC. The pharmacological phenotype of combined multidrug-resistance mdr1a/1b- and mrp1-deficient mice. Cancer Res. 2001;61(4):1469–76.PubMedGoogle Scholar
  49. 49.
    Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res. 1996;13(5):671–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ramakrishna Samala
    • 1
  • Helen R. Thorsheim
    • 1
  • Satyanarayana Goda
    • 1
    • 2
  • Kunal Taskar
    • 1
    • 3
  • Brunilde Gril
    • 4
  • Patricia S. Steeg
    • 4
  • Quentin R. Smith
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyTexas Tech University Health Sciences CenterAmarilloUSA
  2. 2.Formurex, Inc.StocktonUSA
  3. 3.Mechanistic Safety and DispositionIVIVT, GlaxoSmithKlineWareUK
  4. 4.Women’s Malignancies Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations