Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control

Abstract

Purpose

To verify previously reported findings for the European Medicines Agency’s method for Average Bioequivalence with Expanding Limits (ABEL) for assessing highly variable drugs and to extend the assessment for other replicate designs in a wide range of sample sizes and CVs. To explore the properties of a new modified method which maintains the consumer risk ≤0.05 in all cases.

Methods

Monte-Carlo simulations of three different replicate designs covering a wide range of sample sizes and intra-subject variabilities were performed.

Results

At the switching variability of CV wR 30% the consumer risk is substantially inflated to up to 9.2%, which translates into a relative increase of up to 84%. The critical region of inflated type I errors ranges approximately from CV wR 25 up to 45%. The proposed method of iteratively adjusting α maintains the consumer risk at the desired level of ≤5% independent from design, variability, and sample size.

Conclusions

Applying the European Medicines Agency’s ABEL method at the nominal level of 0.05 inflates the type I error to an unacceptable degree, especially close to a CV wR of 30%. To control the type I error nominal levels ≤0.05 should be employed. Iteratively adjusting α is suggested to find optimal levels of the test.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

(A)BE:

(Average) bioequivalence

ABEL:

Average bioequivalence with expanding limits

AUC :

Area under the curve

CI:

Confidence interval

C max :

Maximum observed concentration

CV wR :

Within-subject coefficient of variation of the reference treatment

EMA:

European Medicines Agency

FDA:

(United States) Food and Drug Administration

GMR :

Geometric means ratio

HVD(P):

Highly variable drug (product)

k :

Regulatory constant

L :

Lower expanded acceptance limit for bioequivalence

N :

Sample size

n 1,2 :

Number of subjects in sequence 1, 2

R:

Reference product

RSABE:

Reference-scaled average bioequivalence

T:

Test product

TIE:

Empiric type I error (probability of α, consumer risk)

U :

Upper expanded acceptance limit for bioequivalence

α :

Nominal level of the statistical test

α adj :

Adjusted α

θ :

True T/R ratio

References

  1. 1.

    European Medicines Agency, Committee for Medicinal Products for Human Use (2010) Guideline on the Investigation of Bioequivalence. London; 2010 Jan 20. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf.

  2. 2.

    McGilveray IJ, Midha KK, Skelly JP, Dighe S, Doluisio JT, French IW, et al. Consensus report from “Bio International ’89”: issues in the evaluation of bioavailability data. J Pharm Sci. 1990;79(10):945–6.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Blume HH, KK Midha, editors. Bio-International. bioavailability, bioequivalence and pharmacokinetics. Stuttgart: medpharm Scientific Publishers; 1993.

  4. 4.

    Boddy AW, Snikeris FC, Kringle RO, Wei GCG, Opperman JA, Midha KK. An approach for widening the bioequivalence acceptance limits in the case of highly variable drugs. Pharm Res. 1995;12(12):1865–68.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Shah VP, Yacobi A, Barr WH, Benet LZ, Breimer D, Dobrinska MR, et al. Evaluation of orally administered highly variable drugs and drug formulations. Pharm Res. 1996;13(11):1590–4.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Schuirmann D. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokin Biopharm. 1987;15:657–80.

    CAS  Article  Google Scholar 

  7. 7.

    Tóthfalusi L, Endrényi L. Sample sizes for bioequivalence studies for highly variable drugs. J Pharm Pharmaceut Sci. 2012;15(1):73–84.

    Google Scholar 

  8. 8.

    Patterson SD, Jones B. Viewpoint: observations on scaled average bioequivalence. Pharm Stat. 2012;11:1–7.

    Article  PubMed  Google Scholar 

  9. 9.

    European Medicines Agency, Committee for Human Medicinal Products. Questions & Answers: positions on specific questions addressed to the Pharmacokinetics Working Party (PKWP). London; 2015 Nov 19. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002963.pdf.

  10. 10.

    Willavize SA, Morgenthien EA. Comparison of models for average bioequivalence in replicated crossover designs. Pharm Stat. 2006;5(3):201–11.

    Article  PubMed  Google Scholar 

  11. 11.

    Chow S-C, Shao J, Wang H. Individual bioequivalence testing under 2 × 3 designs. Stat Med. 2002;21(5):629–48.

    Article  PubMed  Google Scholar 

  12. 12.

    Endrényi L, Tóthfalusi L. Regulatory conditions for the determination of bioequivalence of highly variable drugs. J Pharm Pharmaceut Sci. 2009;12(1):138–49.

    Article  Google Scholar 

  13. 13.

    Chow S-C, J-p L. Design and analysis of bioavailability and bioequivalence studies. Boca Raton: Chapman & Hall/CRC Press; 2009. p. 596–8.

    Google Scholar 

  14. 14.

    d_labes (Berlin, DE). RSABE/ABEL: ‘alpha’ of scaled ABE? In: Bioequivalence and Bioavailability Forum [Internet]. Vienna: BEBAC; 2013 Mar 15. Available from: http://forum.bebac.at/mix_entry.php?id=10202.

  15. 15.

    Wonnemann M, Frömke C, Koch A. Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs. Pharm Res. 2015;32(1):135–43.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Roebruck P, Kühn A. Comparison of tests and sample size formulae for proving therapeutic equivalence based on the difference of binomial probabilities. Stat Med. 1995;14(14):1583–94.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Schütz H. Two-stage designs in bioequivalence trials. Eur J Clin Pharmacol. 2015;71(3):271–81.

    Article  PubMed  Google Scholar 

  18. 18.

    Tóthfalusi L, Endrényi L, García Arieta A. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence. Clin Pharmacokinet. 2009;48(11):725–43.

    Article  PubMed  Google Scholar 

  19. 19.

    Labes D, Schütz H, Lang B. PowerTOST: power and sample size based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. R package version 1.3–5. 2016. Available from: https://cran.r-project.org/package=PowerTOST.

  20. 20.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna; 2016. Available from: https://www.r-project.org/.

  21. 21.

    Zheng C, Wang J, Zhao L. Testing bioequivalence for multiple formulations with power and sample size calculations. Pharm Stat. 2012;11(4):334–41.

    Article  PubMed  Google Scholar 

  22. 22.

    Brent RP. Algorithms for minimization without derivatives. Mineola: Dover Publications; 2003.

    Google Scholar 

  23. 23.

    European Generic Medicines Association. Revised EMA Bioequivalence Guideline. Questions & Answers. Summary of the discussions held at the 3rd EGA Symposium on Bioequivalence. London: 2010 Jun. Available from: http://www.medicinesforeurope.com/wp-content/uploads/2016/03/EGA_BEQ_QA_WEB_QA_1_32.pdf.

  24. 24.

    Blume H, Kübel-Thiel K, Reutter B, Siewert M, Stenzhorn G. [Nifedipin: Monographie zur Prüfung der Bioverfügbarkeit/Bioäquivalenz von schnell-freisetzenden Zubereitungen]. Pharm Ztg. 1988;133:389–93. German.

    Google Scholar 

  25. 25.

    Commission of the European Communities, CPMP Working Party on the Efficacy of Medicinal Products. Investigation of Bioavailability and Bioequivalence. Note for Guidance III/54/89-EN, 9th Draft. Brussels: 1991.

  26. 26.

    Health Canada, Therapeutic Products Directorate. Guidance Document. Comparative Bioavailability Standards: Formulations Used for Systemic Effects. Ottawa:2012 May 22. Available from: http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/prodpharma/applic-demande/guide-ld/bio/gd_standards_ld_normes-eng.pdf.

  27. 27.

    European Medicines Agency, Committee for Medicinal Products for Human Use. Concept paper for an addendum to the note for guidance on the investigation of bioavailability and bioequivalence: evaluation of bioequivalence of highly variable drugs and drug products. London; 2006 Apr 27. Available from: http://bebac.at/downloads/14723106en.pdf.

  28. 28.

    Karalis V, Macheras P, Symillides M. Geometric mean ratio-dependent scaled bioequivalence limits with leveling-off properties. Europ J Pharm Sci. 2005;26:54–61.

    CAS  Article  Google Scholar 

  29. 29.

    Kytariolos J, Karalis V, Macheras P, Symillides M. Novel scaled bioequivalence limits with leveling-off properties. Pharm Res. 2006;23(11):2657–64.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Karalis V, Symillides M, Macheras P. On the leveling-off properties of the new bioequivalence limits for highly variable drugs of the EMA guideline. Europ J Pharm Sci. 2011;44:497–505.

    CAS  Article  Google Scholar 

  31. 31.

    Symillides M, Karalis V, Macheras P. Exploring the relationships between scaled bioequivalence limits and within-subject variability. J Pharm Sci. 2013;102(1):297–301.

    Article  Google Scholar 

  32. 32.

    Senn S, Grieve AP. A comment on optimal allocations for bioequivalence studies. Biometrics. 1999;55:1314–5.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    ClinicalTrial.gov. A service of the U.S. National Institutes of Health [Internet]. Bethesda (MD): U.S. National Library of Medicine [2013] – Identifier NCT01290757 [last updated 2014 May 8]. Available from: https://clinicaltrials.gov/ct2/show/NCT01290757.

  34. 34.

    U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for Industry. Statistical Approaches to Establishing Bioequivalence. Rockville (MD): 2001 Jan. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070244.pdf.

  35. 35.

    International Council for Harmonisation. ICH Harmonised Tripartite Guideline: Statistical Principles for Clinical Trials. 1998 Feb 5. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E9/Step4/E9_Guideline.pdf.

  36. 36.

    Commission of the European Communities. Investigation of Bioavailability and Bioequivalence. Note for Guidance III/54/89-EN. Brussels: 1991 Dec. Available from: http://www.clindesc.com/Guidelines_online/3%20Clinical/3.1%20General/3_1_2.pdf.

  37. 37.

    Fuglsang A. Controlling type I errors for two-stage bioequivalence study designs. Clin Res Reg Aff. 2011;28(4):100–5.

    Article  Google Scholar 

  38. 38.

    Bauer P, Köhne K. Evaluation of experiments with adaptive interim analyses. Biometrics. 1992;50(4):1029–41. correction in Biometrics. 1996;52:380.

    Article  Google Scholar 

  39. 39.

    Lehmacher W, Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics. 1999;55(4):1286–90.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wolfsegger MJ, Jaki T. Simultaneous confidence intervals by iteratively adjusted alpha for relative effects in the one-way layout. Stat Comput. 2006;16:15–23.

    Article  Google Scholar 

  41. 41.

    Davit BM, Chen M-L, Conner DP, Haidar SH, Kim S, Lee CH, et al. Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the US Food and Drug Administration. AAPS J. 2012;14(4):915–24.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Muñoz J, Alcaide D, Ocaña J. Consumer’s risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs. Stat Med. 2016;35(12):1933–4.

    Article  PubMed  Google Scholar 

  43. 43.

    World Health Organization. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability. Geneva: 2015 May 20. Available from: http://apps.who.int/medicinedocs/documents/s21898en/s21898en.pdf.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to thank László Endrényi and Anders Fuglsang for useful comments on an earlier draft of this article. Their comments and challenges directly improved the quality of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helmut Schütz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 994 kb)

ESM 2

(XLS 203 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labes, D., Schütz, H. Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control. Pharm Res 33, 2805–2814 (2016). https://doi.org/10.1007/s11095-016-2006-1

Download citation

KEY WORDS

  • bioequivalence
  • European Medicines Agency
  • highly variable drugs
  • Monte-Carlo simulation
  • reference-scaling