Pharmaceutical Research

, Volume 33, Issue 11, pp 2704–2712 | Cite as

A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets

  • Tochukwu C. Okwuosa
  • Dominika Stefaniak
  • Basel Arafat
  • Abdullah Isreb
  • Ka-Wai Wan
  • Mohamed A. Alhnan
Research Paper



The fabrication of ready-to-use immediate release tablets via 3D printing provides a powerful tool to on-demand individualization of dosage form. This work aims to adapt a widely used pharmaceutical grade polymer, polyvinylpyrrolidone (PVP), for instant on-demand production of immediate release tablets via FDM 3D printing.


Dipyridamole or theophylline loaded filaments were produced via processing a physical mixture of API (10%) and PVP in the presence of plasticizer through hot-melt extrusion (HME). Computer software was utilized to design a caplet-shaped tablet. The surface morphology of the printed tablet was assessed using scanning electron microscopy (SEM). The physical form of the drugs and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. In vitro drug release studies for all 3D printed tablets were conducted in a USP II dissolution apparatus.


Bridging 3D printing process with HME in the presence of a thermostable filler, talc, enabled the fabrication of immediate release tablets at temperatures as low as 110°C. The integrity of two model drugs was maintained following HME and FDM 3D printing. XRPD indicated that a portion of the loaded theophylline remained crystalline in the tablet. The fabricated tablets demonstrated excellent mechanical properties, acceptable in-batch variability and an immediate in vitro release pattern.


Combining the advantages of PVP as an impeding polymer with FDM 3D printing at low temperatures, this approach holds a potential in expanding the spectrum of drugs that could be used in FDM 3D printing for on demand manufacturing of individualised dosage forms.


fused filament fabrication HME immediate release patient-specific 



Active pharmaceutical ingredient


Computer aided design


Differential scanning calorimetry


Fused deposition modelling


Hot melt extrusion


High performance liquid chromatography


Polylactic acid


Poly(vinyl alcohol)




Scanning electron microscopy


Glass transition temperature


Thermal gravimetric analysis


Melting point


X-ray powder diffractometry



The authors would like to thank UCLAN Innovation Team for their support and Mrs Rim Arafat for her help with graphics design.


  1. 1.
    Chung P, Heller JA, Etemadi M, Ottoson PE, Liu JA, Rand L, et al. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding. J Vis Exp. 2014;88:e51745.PubMedGoogle Scholar
  2. 2.
    Dombroski CE, Balsdon ME, Froats A. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Res Notes. 2014;7:443.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aprecia. Zipdose® technology. 12/3/2015. Available from:
  4. 4.
    McLean S, Sheikh A, Cresswell K, Nurmatov U, Mukherjee M, Hemmi A, Pagliari C. The impact of telehealthcare on the quality and safety of care: a systematic overview. Plos One. 2013;8(8).Google Scholar
  5. 5.
    Sanderson K. 3D printing: the future of manufacturing medicine? Pharm J. 2015;7865.Google Scholar
  6. 6.
    Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1–2):88–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Boetker J, Water JJ, Aho J, Arnfast L, Bohr A, Rantanen J. Modifying release characteristics from 3D printed drug-eluting products. Eur J Pharm Sci. 2016.Google Scholar
  12. 12.
    Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci. 2015;16(7):15118–35.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139–48.CrossRefPubMedGoogle Scholar
  14. 14.
    Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, et al. Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm. 2014;459(1–2):62–4.CrossRefPubMedGoogle Scholar
  15. 15.
  16. 16.
    GBIResearch. Oral drug delivery market report. 16/11/2015. Available from:
  17. 17.
    Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Knopp MM, Olesen NE, Holm P, Langguth P, Holm R, Rades T. Influence of polymer molecular weight on drug–polymer solubility: a comparison between experimentally determined solubility in PVP and prediction derived from solubility in monomer. J Pharm Sci. 2015;104(9):2905–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Shah J, Vasanti S, Anroop B, Vyas H. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem. 2008;63(1):69–75.Google Scholar
  20. 20.
    Sharma A, Jain CP. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res Pharm Sci. 2010;5(1):49–56.PubMedPubMedCentralGoogle Scholar
  21. 21.
    SIGMA-ALDRICH. Theophylline melting point standard. 2016 16/06. Available from:
  22. 22.
    SIGMA-ALDRICH. Dipyridamole. 2016 16/06. Available from:
  23. 23.
    Agrawal AM, Dudhedia MS, Patel AD, Raikes MS. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm. 2013;457(1):71–81.CrossRefPubMedGoogle Scholar
  24. 24.
    Alsulays BB, Park JB, Alshehri SM, Morott JT, Alshahrani SM, Tiwari RV, et al. Influence of molecular weight of carriers and processing parameters on the extrudability, drug release, and stability of fenofibrate formulations processed by hot-melt extrusion. J Drug Delivery Sci Technol. 2015;29:189–98.CrossRefGoogle Scholar
  25. 25.
    Agrawal A, Dudhedia M, Deng W, Shepard K, Zhong L, Povilaitis E, et al. Development of tablet formulation of amorphous solid dispersions prepared by hot melt extrusion using quality by design approach. AAPS PharmSciTech. 2016;17(1):214–32.CrossRefPubMedGoogle Scholar
  26. 26.
    LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams 3rd RO. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2016;17(1):120–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm. 2016;499(1–2):175–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Alexander V, Gerasimov MAZ, Gorbatchuk VV, Usmanova LS. Increasing the solubility of dipyridamole using polyethylene glycols. Int J Pharm Pharm Sci. 2014;6(9):244–7.Google Scholar
  29. 29.
    Silva Oliveira M, Miguel Agustinho SC, Guzzi Plepis AMD, Tabak M. On the thermal decomposition of dipyridamole: thermogravimetric, differential scanning calorimetric and spectroscopic studies. Spectrosc Lett. 2006;39(2):145–61.CrossRefGoogle Scholar
  30. 30.
    Enderle JD, Bronzino JD, Blanchard SM. Introduction to biomedical engineering. Elsevier Academic Press; 2005.Google Scholar
  31. 31.
    Yang Z, Yu J, Yang T, Xing H, Zhang J, Xian L, Ding P, Wang D. A method for the preparation of sustained release-coated Metoprolol Succinate pellet-containing tablets. Pharm Dev Technol. 2015:1–8.Google Scholar
  32. 32.
    Ammar HO, Ghorab MM, Felton LA, Gad S, Fouly AA. Effect of antiadherents on the physical and drug release properties of acrylic polymeric films. AAPS PharmSciTech. 2016;17(3):682–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Kuno Y, Kojima M, Nakagami H, Yonemochi E, Terada K. Effect of the type of lubricant on the characteristics of orally disintegrating tablets manufactured using the phase transition of sugar alcohol. Eur J Pharm Biopharm. 2008;69(3):986–92.CrossRefPubMedGoogle Scholar
  34. 34.
    American Pharmacists Association, Quinn ME, Rowe RC, Sheskey PJ. Handbook of pharmaceutical excipients. London: Pharmaceutical Press; 2009.Google Scholar
  35. 35.
    Verdonck E, Schaap K, Thomas LC. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Int J Pharm. 1999;192(1):3–20.CrossRefPubMedGoogle Scholar
  36. 36.
    Szakonyi G, Zelkó R. The effect of water on the solid state characteristics of pharmaceutical excipients: Molecular mechanisms, measurement techniques, and quality aspects of final dosage form. Int J Pharm Investig. 2012;2(1):18–25.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lai MC, Hageman MJ, Schowen RL, Borchardt RT, Laird BB, Topp EM. Chemical stability of peptides in polymers. 2. Discriminating between solvent and plasticizing effects of water on peptide deamidation in poly(vinylpyrrolidone). J Pharm Sci. 1999;88(10):1081–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Nair R, Nyamweya N, Gönen S, Martı́nez-Miranda LJ, Hoag SW. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225(1–2):83–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Vepuri SB. Studies based on supramolecular chemistry in drug design and improvement of pharmaceutical solids. In. Department of Pharmacy: Acharya Nagarjuna University; 2014. p. 212.Google Scholar
  40. 40.
    Rasanen E, Rantanen J, Jorgensen A, Karjalainen M, Paakkari T, Yliruusi J. Novel identification of pseudopolymorphic changes of theophylline during wet granulation using near infrared spectroscopy. J Pharm Sci. 2001;90(3):389–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Makerbot. Replicator 2X Experimental 3D Printer User Manual., In. 2013.
  42. 42.
    Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1–2):105–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu D-G, Branford-White C, Yang Y-C, Zhu L-M, Welbeck EW, Yang X-L. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):1–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17.CrossRefPubMedGoogle Scholar
  46. 46.
    Yu DG, Li XY, Wang X, Yang JH, Bligh SW, Williams GR. Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces. 2015;7(33):18891–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Yang C, Yu DG, Pan D, Liu XK, Wang X, Bligh SWA, et al. Electrospun pH-sensitive core shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 2016;35:77–86.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tochukwu C. Okwuosa
    • 1
  • Dominika Stefaniak
    • 1
  • Basel Arafat
    • 1
  • Abdullah Isreb
    • 1
  • Ka-Wai Wan
    • 1
  • Mohamed A. Alhnan
    • 1
  1. 1.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK

Personalised recommendations