Pharmaceutical Research

, Volume 33, Issue 9, pp 2078–2097 | Cite as

Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines?

  • Sharan Bobbala
  • Sarah HookEmail author
Expert Review


Modern vaccine design has moved away from attenuated or inactivated whole-pathogen vaccines to more pure and defined subunit vaccines. However subunit antigens have poor bioavailability and stability and lack immunogenicity. To overcome these issues subunit vaccines have to be administered in a suitable delivery system in combination with immune stimulants. Many different delivery systems have been developed and investigated each having different modes of action, for example increasing delivery and/or sustaining delivery of antigen to immune cells. In addition a number of different routes of immunization are possible and these can play a crucial role in determining the fate of an immune response. In this review the different strategies for the delivery of prophylactic and therapeutic subunit vaccines along with the impact of these on the immune responses generated are discussed.


hydrogels immunization implants nanoparticles subunit vaccines 



Archaeal-lipid mucosal vaccine adjuvant and delivery


Antigen presenting cells


Bronchus associated lymphoid tissue


Bacterial ghosts


Dermal dendritic cells


Dry powder inhalers


Gut-associated lymphoid tissue


Hepatitis B surface antigen










Immune stimulating complexes




Langerhans cells

M cells

Microfold cells


Mucosa-associated lymphoid tissue


Major histocompatibility complex (MHC)


Nose-associated lymphoid tissue


Nod-like receptor protein 3


Poly (lactic-co-glycolic acid)


Pressurized metered dose inhalers


Peyer’s patches


Pathogen recognition receptors




Toll-like receptor


Virus like particles


  1. 1.
    Lombard M, Pastoret PP, Moulin AM. A brief history of vaccines and vaccination. Rev Sci Tech (Int Off Epizootics). 2007;26(1):29–48.CrossRefGoogle Scholar
  2. 2.
    Glew RH. Molecular therapeutics: 21st century medicine by Pamela Greenwell and Michelle McCulley. Biochem Mol Biol Educ. 2008;36(6):444–5.CrossRefGoogle Scholar
  3. 3.
    Huang DB, Wu JJ, Tyring SK. A review of licensed viral vaccines, some of their safety concerns, and the advances in the development of investigational viral vaccines. J Infect. 2004;49(3):179–209.PubMedCrossRefGoogle Scholar
  4. 4.
    Nabel GJ. Designing tomorrow’s vaccines. N Engl J Med. 2013;368(6):551–60.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tandrup Schmidt S, Foged C, Smith Korsholm K, Rades T, Christensen D. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics. 2016;8(1):7.PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009;30(1):23–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. Annu Rev Med. 2012;63(1):95–111.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunachie S, Hill AV, Fletcher HA. Profiling the host response to malaria vaccination and malaria challenge. Vaccine. 2015;33(40):5316–20.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Aagaard C, Dietrich J, Doherty M, Andersen P. TB vaccines: current status and future perspectives. Immunol Cell Biol. 2009;87(4):279–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69.PubMedCrossRefGoogle Scholar
  12. 12.
    Emens LA. Cancer vaccines: on the threshold of success. Expert Opin Emerg Drugs. 2008;13(2):295–308.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kallerup RS, Foged C. Classification of vaccines. Subunit vaccine delivery. New York: Springer-Verlag; 2015. p. 15–29.Google Scholar
  14. 14.
    De Gregorio E, Rappuoli R, editors. Novel Immunologic Adjuvants. London: Future Medicine Ltd; 2011.Google Scholar
  15. 15.
    Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S. Synthetic TRP2 long-peptide and α-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression. Vaccine. 2015;33(43):5838–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Kamath AT, Mastelic B, Christensen D, Rochat A-F, Agger EM, Pinschewer DD, et al. Synchronization of dendritic cell activation and antigen exposure is required for the induction of Th1/Th17 responses. J Immunol (Baltim, Md : 1950). 2012;188(10):4828–37.CrossRefGoogle Scholar
  18. 18.
    Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–107.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 2013;123(7):3061–73.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 2006;117(1):78–88.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A. 2009;106(3):870–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Harris J, Sharp FA, Lavelle EC. The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur J Immunol. 2010;40(3):634–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Neumann S, Burkert K, Kemp R, Rades T, Rod Dunbar P, Hook S. Activation of the NLRP3 inflammasome is not a feature of all particulate vaccine adjuvants. Immunol Cell Biol. 2014;92(6):535–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim M-G, Park JY, Shon Y, Kim G, Shim G, Oh Y-K. Nanotechnology and vaccine development. Asian J Pharm Sci. 2014;9(5):227–35.CrossRefGoogle Scholar
  25. 25.
    Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138(5):779–95.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lycke N. Mechanisms of adjuvant action. In: Singh, M, editors. Vaccine adjuvants and delivery systems. New Jersey: John Wiley & Sons, Inc.; 2007. p. 53–79.Google Scholar
  27. 27.
    Vogel FR, Caillet C, Kusters IC, Haensler J. Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines. 2009;8(4):483–92.PubMedCrossRefGoogle Scholar
  28. 28.
    O’Hagan DT, Tsai T, Reed S. Emulsion-based adjuvants for improved influenza vaccines. Influenza vaccines for the future. Basel: Springer; 2011. p. 327–57.Google Scholar
  29. 29.
    Coler RN, Carter D, Friede M, Reed SG. Adjuvants for malaria vaccines. Parasite Immunol. 2009;31(9):520–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Garçon N, Leroux-Roels G, Cheng W-F. Vaccine adjuvants. Perspect Vaccinology. 2011;1(1):89–113.CrossRefGoogle Scholar
  31. 31.
    Zeng BJ, Chuan YP, O’Sullivan B, Caminschi I, Lahoud MH, Thomas R, et al. Receptor-specific delivery of protein antigen to dendritic cells by a nanoemulsion formed using top-down non-covalent click self-assembly. Small. 2013;9(22):3736–42.PubMedCrossRefGoogle Scholar
  32. 32.
    De Gregorio E, Tritto E, Rappuoli R. Alum adjuvanticity: unraveling a century old mystery. Eur J Immunol. 2008;38(8):2068–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287–93.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Franchi L, Núñez G. The NLRP3 inflammasome is critical for alum-mediated IL-1β secretion but dispensable for adjuvant activity. Eur J Immunol. 2008;38(8):2085–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kool M, Fierens K, Lambrecht BN. Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol. 2012;61(Pt 7):927–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Myschik J, Rades T, Hook S. Advances in lipid-based subunit vaccine formulations. Curr Immunol Rev. 2009;5(1):42–8.CrossRefGoogle Scholar
  38. 38.
    Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert Opin Drug Deliv. 2011;8(4):505–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Godsey ME, Suryaprakash S, Leong KW. Materials innovation for co-delivery of diverse therapeutic cargos. RSC Adv. 2013;3(47):24794–811.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, et al. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res. 2012;22(3):193–204.PubMedCrossRefGoogle Scholar
  41. 41.
    Vangala A, Kirby D, Rosenkrands I, Agger EM, Andersen P, Perrie Y. A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: characterisation, environmental scanning electron microscopy and immunisation studies in mice. J Pharm Pharmacol. 2006;58(6):787–99.PubMedCrossRefGoogle Scholar
  42. 42.
    Ducat E, Brion M, Lecomte F, Evrard B, Piel G. The experimental design as practical approach to develop and optimize a formulation of peptide-loaded liposomes. AAPS PharmSciTech. 2010;11(2):966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta Biomembr. 2006;1758(10):1633–40.CrossRefGoogle Scholar
  44. 44.
    Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids. 1993;64(1–3):3–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Bitounis D, Fanciullino R, Iliadis A, Ciccolini J. Optimizing druggability through liposomal formulations: new approaches to an old concept. ISRN Pharmaceutics. 2012;2012.Google Scholar
  46. 46.
    Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccin. 2014;2(6):159–82.CrossRefGoogle Scholar
  48. 48.
    The R, Partnership SCT. Efficacy and safety of the RTS, S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014;11(7):e1001685.CrossRefGoogle Scholar
  49. 49.
    van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32(52):7098–107.PubMedCrossRefGoogle Scholar
  50. 50.
    Fan Y, Sahdev P, Ochyl LJ, Akerberg J, Moon JJ. Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release. 2015;208:121–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Varypataki EM, van der Maaden K, Bouwstra J, Ossendorp F, Jiskoot W. Cationic liposomes loaded with a synthetic long peptide and Poly(I:C): a defined adjuvanted vaccine for induction of antigen-specific T cell cytotoxicity. AAPS J. 2015;17(1):216–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Sahdev P, Ochyl L, Moon J. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31(10):2563–82.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Watarai S, Iwase T, Tajima T, Yuba E, Kono K. Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier. Sci World J. 2013;2013:7.CrossRefGoogle Scholar
  54. 54.
    Watarai S, Iwase T, Tajima T, Yuba E, Kono K, Sekiya Y. Application of pH-sensitive fusogenic polymer-modified liposomes for development of mucosal vaccines. Vet Immunol Immunopathol. 2014;158(1–2):62–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Nielsen HM, Hübschmann HB, Rades T. ISCOMs as a vaccine delivery system. Subunit vaccine delivery: Springer; 2015. p. 141-58.Google Scholar
  56. 56.
    Morein B, Hu K-F, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev. 2004;56(10):1367–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol Cell Biol. 2005;83(2):119–28.PubMedCrossRefGoogle Scholar
  58. 58.
    Robson NC, Donachie AM, Mowat AM. Simultaneous presentation and cross‐presentation of immune‐stimulating complex‐associated cognate antigen by antigen‐specific B cells. Eur J Immunol. 2008;38(5):1238–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Schnurr M, Orban M, Robson NC, Shin A, Braley H, Airey D, et al. ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol (Baltim, Md : 1950). 2009;18(3):1253–9.CrossRefGoogle Scholar
  60. 60.
    Paepenmüller T, Müller-Goymann CC. Influence of Quil A on liposomal membranes. Int J Pharm. 2014;475(1–2):138–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thipphawong J. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS). Virology. 1999;259(2):256–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Rimmelzwaan GF, Nieuwkoop N, Brandenburg A, Sutter G, Beyer WE, Maher D, et al. A randomized, double blind study in young healthy adults comparing cell mediated and humoral immune responses induced by influenza ISCOM vaccines and conventional vaccines. Vaccine. 2000;19(9–10):1180–7.PubMedCrossRefGoogle Scholar
  63. 63.
    McBurney WT, Lendemans DG, Myschik J, Hennessy T, Rades T, Hook S. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine. 2008;26(35):4549–56.PubMedCrossRefGoogle Scholar
  64. 64.
    Lendemans DG, Myschik J, Hook S, Rades T. Cationic cage-like complexes formed by DC-cholesterol, Quil-A, and phospholipid. J Pharm Sci. 2005;94(8):1794–807.PubMedCrossRefGoogle Scholar
  65. 65.
    Camussone CM, Veaute CM, Pujato N, Morein B, Marcipar IS, Calvinho LF. Immune response of heifers against a Staphylococcus aureus CP5 whole cell and lysate vaccine formulated with ISCOM Matrix adjuvant. Res Vet Sci. 2014;96(1):86–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Saroja CH, Lakshmi PK, Bhaskaran S. Recent trends in vaccine delivery systems: a review. Int J Pharm Investig. 2011;1(2):64–74.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lynch ML, Ofori-Boateng A, Hippe A, Kochvar K, Spicer PT. Enhanced loading of water-soluble actives into bicontinuous cubic phase liquid crystals using cationic surfactants. J Colloid Interface Sci. 2003;260(2):404–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (Cubosomes). Langmuir. 2001;17(19):5748–56.CrossRefGoogle Scholar
  69. 69.
    Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Res Int. 2014;2014:12.Google Scholar
  70. 70.
    Meli V, Caltagirone C, Falchi AM, Hyde ST, Lippolis V, Monduzzi M, et al. Docetaxel-loaded fluorescent liquid-crystalline nanoparticles for cancer theranostics. Langmuir. 2015;31(35):9566–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Patrick TS. Cubosomes: bicontinuous liquid crystalline nanoparticles. Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition : Taylor & Francis; 2009. p. 1018–28.Google Scholar
  72. 72.
    Spicer PT. Bicontinuous Liquid Crystalline Nanoparticles, Second Edition. Dekker Encyclopedia of Nanoscience and Nanotechnology. London: Taylor & Francis; 2009. p. 1018–28.Google Scholar
  73. 73.
    Rizwan SB, Boyd BJ. Cubosomes: structure, preparation and use as an antigen delivery system. Subunit Vaccine Delivery: Springer; 2015. p. 125–40.Google Scholar
  74. 74.
    Rizwan SB, McBurney WT, Young K, Hanley T, Boyd BJ, Rades T, et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release. 2013;165(1):16–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Moser C, Amacker M, Kammer AR, Rasi S, Westerfeld N, Zurbriggen R. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev Vaccines. 2007;6(5):711–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Peduzzi E, Westerfeld N, Zurbriggen R, Pluschke G, Daubenberger CA. Contribution of influenza immunity and virosomal-formulated synthetic peptide to cellular immune responses in a phase I subunit malaria vaccine trial. Clin Immunol. 2008;127(2):188–97.PubMedCrossRefGoogle Scholar
  77. 77.
    Bungener L, Huckriede A, de Mare A, de Vries-Idema J, Wilschut J, Daemen T. Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity. Vaccine. 2005;23(10):1232–41.PubMedCrossRefGoogle Scholar
  78. 78.
    Herzog C, Hartmann K, Künzi V, Kürsteiner O, Mischler R, Lazar H, et al. Eleven years of Inflexal® V—a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Moser C, Müller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12(7):779–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu H, de Vries-Idema J, ter Veer W, Wilschut J, Huckriede A. Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med Microbiol Immunol. 2014;203(1):47–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Kamphuis T, Stegmann T, Meijerhof T, Wilschut J, de Haan A. A virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A provides protection against viral challenge without priming for enhanced disease in cotton rats. Influenza Other Respir Viruses. 2013;7(6):1227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jain S, Caforio A, Driessen AJM. Biosynthesis of archaeal membrane ether lipids. Front Microbiol. 2014;5:641.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Benvegnu T, Lemiègre L, Cammas-Marion S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat Drug Deliv Formulation. 2009;3(3):206–20.CrossRefGoogle Scholar
  84. 84.
    Sprott GD, Sad S, Fleming LP, DiCaire CJ, Patel GB, Krishnan L. Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen. Archaea. 2003;1(3):151–64.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Patel GB, Zhou H, KuoLee R, Chen W. Archaeosomes as adjuvants for combination vaccines. J Liposome Res. 2004;14(3–4):191–202.PubMedCrossRefGoogle Scholar
  86. 86.
    Patel GB, Chen W. Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Rev Vaccines. 2010;9(4):431–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release : Off J Control Release Soc. 2012;161(2):505–22.CrossRefGoogle Scholar
  88. 88.
    Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–86.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Arca HC, Gunbeyaz M, Senel S. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev Vaccines. 2009;8(7):937–53.PubMedCrossRefGoogle Scholar
  90. 90.
    Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Domard A, Gey C, Rinaudo M, Terrassin C. 13C and 1H n.m.r. spectroscopy of chitosan and N-trimethyl chloride derivatives. Int J Biol Macromol. 1987;9(4):233–7.CrossRefGoogle Scholar
  92. 92.
    Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine. 2011;6:765–74.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res. 2004;21(4):671–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Porporatto C, Bianco ID, Correa SG. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J Leukoc Biol. 2005;78(1):62–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Gordon S, Saupe A, McBurney W, Rades T, Hook S. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol. 2008;60(12):1591–600.PubMedCrossRefGoogle Scholar
  96. 96.
    Pawar D, Jaganathan KS. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: enhancement of mucosal and systemic immune response. Drug Deliv. 2014:1–11.Google Scholar
  97. 97.
    Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bhaskar S, Pollock KM, Yoshida M, Lahann J. Towards designer microparticles: simultaneous control of anisotropy, shape, and size. Small. 2010;6(3):404–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Milacic V, Bailey BA, O’Hagan D, Schwendeman SP. Injectable PLGA systems for delivery of vaccine antigens. Long acting injections and implants: Springer; 2012. p. 429–58.Google Scholar
  100. 100.
    Salvador A, Igartua M, Hernández RM, Pedraz JL. An overview on the field of micro- and nanotechnologies for synthetic peptide-based vaccines. J Drug Deliv. 2011;2011:181646.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccines Immunother. 2016:1–14.Google Scholar
  102. 102.
    Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother. 2016;12(3):806–28.PubMedCrossRefGoogle Scholar
  103. 103.
    Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res. 2011;28(2):215–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and Immunotherapy. Chem Rev. 2015;115(19):11109–46.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    San Roman B, Irache JM, Gomez S, Tsapis N, Gamazo C, Espuelas MS. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 2008;70(1):98–108.CrossRefGoogle Scholar
  108. 108.
    Shi S, Hickey AJ. PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B. Pharm Res. 2010;27(2):350–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Carcaboso AM, Hernandez RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine. 2004;22(11–12):1423–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials. 2011;32(14):3666–78.PubMedCrossRefGoogle Scholar
  111. 111.
    Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012;33(19):4957–64.PubMedCrossRefGoogle Scholar
  112. 112.
    Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials. 2015;40:88–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Scott EA, Stano A, Gillard M, Maio-Liu AC, Swartz MA, Hubbell JA. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials. 2012;33(26):6211–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Stano A, Scott EA, Dane KY, Swartz MA, Hubbell JA. Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials. 2013;34(17):4339–46.PubMedCrossRefGoogle Scholar
  115. 115.
    Trimaille T, Verrier B. Micelle-based adjuvants for subunit vaccine delivery. Vaccines. 2015;3(4):803–13.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Luo Z, Shi S, Jin L, Xu L, Yu J, Chen H, et al. Cationic micelle based vaccine induced potent humoral immune response through enhancing antigen uptake and formation of germinal center. Colloids Surf B: Biointerfaces. 2015;135:556–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release. 2009;136(2):161–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Coumes F, Huang C-Y, Huang C-H, Coudane J, Domurado D, Li S, et al. Design and development of immunomodulatory antigen delivery systems based on peptide/PEG–PLA conjugate for tuning immunity. Biomacromolecules. 2015;16(11):3666–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, et al. Preparation and in vitro evaluation of imiquimod loaded polylactide-based micelles as potential vaccine adjuvants. Pharm Res. 2015;32(1):311–20.PubMedCrossRefGoogle Scholar
  120. 120.
    Wilson J, Postma A, Keller S, Convertine A, Moad G, Rizzardo E, et al. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles. AAPS J. 2015;17(2):358–69.PubMedCrossRefGoogle Scholar
  121. 121.
    Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Trent A, Ulery BD, Black MJ, Barrett JC, Liang S, Kostenko Y, et al. Peptide amphiphile micelles self-adjuvant group a streptococcal vaccination. AAPS J. 2015;17(2):380–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31(1):58–83.PubMedCrossRefGoogle Scholar
  124. 124.
    Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014;111(3):425–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Chackerian B, Rangel M, Hunter Z, Peabody DS. Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-β without concomitant T cell responses. Vaccine. 2006;24(37–39):6321–31.PubMedCrossRefGoogle Scholar
  126. 126.
    Kazaks A, Balmaks R, Voronkova T, Ose V, Pumpens P. Melanoma vaccine candidates from chimeric hepatitis B core virus-like particles carrying a tumor-associated MAGE-3 epitope. Biotechnol J. 2008;3(11):1429–36.PubMedCrossRefGoogle Scholar
  127. 127.
    Keller SA, Bauer M, Manolova V, Muntwiler S, Saudan P, Bachmann MF. Cutting edge: limited specialization of dendritic cell subsets for MHC class II-associated presentation of viral particles. J Immunol. 2010;184(1):26–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9(10):1149–76.PubMedCrossRefGoogle Scholar
  129. 129.
    Al-Barwani F, Donaldson B, Pelham SJ, Young SL, Ward VK. Antigen delivery by virus-like particles for immunotherapeutic vaccination. Ther Deliv. 2014;5(11):1223–40.PubMedCrossRefGoogle Scholar
  130. 130.
    Schiller JT, Castellsagué X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30(Supplement 5):F123-F38.Google Scholar
  131. 131.
    Thompson CM, Petiot E, Mullick A, Aucoin MG, Henry O, Kamen AA. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnol. 2015;15(1):31.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Muhammad A, Champeimont J, Mayr UB, Lubitz W, Kudela P. Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines. 2012;11(1):97–116.PubMedCrossRefGoogle Scholar
  133. 133.
    Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system. Bioengineered Bugs. 2010;1(5):326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ramey K, Eko FO, Thompson WE, Armah H, Igietseme JU, Stiles JK. Immunolocalization and challenge studies using a recombinant vibrio cholerae ghost expressing trypanosoma brucei Ca2+ ATPase (TBCA2) antigen. AmJTrop Med Hyg. 2009;81(3):407–15.Google Scholar
  135. 135.
    Jechlinger W, Haller C, Resch S, Hofmann A, Szostak MP, Lubitz W. Comparative immunogenicity of the Hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine. 2005;23(27):3609–17.PubMedCrossRefGoogle Scholar
  136. 136.
    Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system: production and applications. Bioengineered Bugs. 2010;1(5):326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Riedmann EM, Kyd JM, Cripps AW, Lubitz W. Bacterial ghosts as adjuvant particles. Expert Rev Vaccines. 2007;6(2):241–53.PubMedCrossRefGoogle Scholar
  138. 138.
    Pan Q, Pais R, Ohandjo A, He C, He Q, Omosun Y, et al. Comparative evaluation of the protective efficacy of two formulations of a recombinant Chlamydia abortus subunit candidate vaccine in a mouse model. Vaccine. 2015;33(15):1865–72.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Chen J, Li N, She F. Helicobacter pylori outer inflammatory protein DNA vaccine-loaded bacterial ghost enhances immune protective efficacy in C57BL/6 mice. Vaccine. 2014;32(46):6054–60.PubMedCrossRefGoogle Scholar
  140. 140.
    Jawale CV, Chaudhari AA, Lee JH. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine. 2014;32(9):1093–9.PubMedCrossRefGoogle Scholar
  141. 141.
    McHugh KJ, Guarecuco R, Langer R, Jaklenec A. Single-injection vaccines: progress, challenges, and opportunities. J Control Release. 2015;219:596–609.PubMedCrossRefGoogle Scholar
  142. 142.
    El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Global Cardiol Sci Pract. 2013:38.Google Scholar
  143. 143.
    Kashyap N, Kumar N, Kumar MN. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst. 2005;22(2):107–49.PubMedCrossRefGoogle Scholar
  144. 144.
    Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromol Biosci. 2010;10(6):563–79.PubMedCrossRefGoogle Scholar
  145. 145.
    Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28.PubMedCrossRefGoogle Scholar
  146. 146.
    Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 2008;68(1):34–45.CrossRefGoogle Scholar
  147. 147.
    Kojarunchitt T, Baldursdottir S, Dong Y-D, Boyd BJ, Rades T, Hook S. Modified thermoresponsive Poloxamer 407 and chitosan sol–gels as potential sustained-release vaccine delivery systems. Eur J Pharm Biopharm. 2015;89:74–81.PubMedCrossRefGoogle Scholar
  148. 148.
    Wu Q, Gong C, Shi S, Wang Y, Huang M, Yang L, et al. Mannan loaded biodegradable and injectable thermosensitive PCL-PEG-PCL hydrogel for vaccine delivery. Soft Mater. 2012;10(4):472–86.CrossRefGoogle Scholar
  149. 149.
    Bobbala S, Tamboli V, McDowell A, Mitra A, Hook S. Novel injectable pentablock copolymer based thermoresponsive hydrogels for sustained release vaccines. AAPS J. 2016;18(1):261–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci. 2010;41(2):360–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Neimert-Andersson T, Hällgren A-C, Andersson M, Langebäck J, Zettergren L, Nilsen-Nygaard J, et al. Improved immune responses in mice using the novel chitosan adjuvant ViscoGel, with a Haemophilus influenzae type b glycoconjugate vaccine. Vaccine. 2011;29(48):8965–73.PubMedCrossRefGoogle Scholar
  152. 152.
    Neimert-Andersson T, Binnmyr J, Enoksson M, Langebäck J, Zettergren L, Hällgren A-C, et al. Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised Phase I/IIa clinical trial. Vaccine. 2014;32(45):5967–74.PubMedCrossRefGoogle Scholar
  153. 153.
    Gübeli RJ, Schöneweis K, Huzly D, Ehrbar M, Hamri GC-E, El-Baba MD, et al. Pharmacologically triggered hydrogel for scheduling hepatitis B vaccine administration. Sci Rep. 2013;3:2610.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kemp JM, Kajihara M, Nagahara S, Sano A, Brandon M, Lofthouse S. Continuous antigen delivery from controlled release implants induces significant and anamnestic immune responses. Vaccine. 2002;20(7–8):1089–98.PubMedCrossRefGoogle Scholar
  155. 155.
    Even MP, Bobbala S, Kooi KL, Hook S, Winter G, Engert J. Impact of implant composition of twin-screw extruded lipid implants on the release behavior. Int J Pharm. 2015;493(1–2):102–10.PubMedCrossRefGoogle Scholar
  156. 156.
    Engert J. Implants as sustained release delivery devices for vaccine antigens. Subunit Vaccine Delivery: Springer; 2015. p. 221-41.Google Scholar
  157. 157.
    Lofthouse S, Nagahara S, Sedgmen B, Barcham G, Brandon M, Sano A. The application of biodegradable collagen minipellets as vaccine delivery vehicles in mice and sheep. Vaccine. 2001;19(30):4318–27.PubMedCrossRefGoogle Scholar
  158. 158.
    Appel B, Maschke A, Weiser B, Sarhan H, Englert C, Angele P, et al. Lipidic implants for controlled release of bioactive insulin: effects on cartilage engineered in vitro. Int J Pharm. 2006;314(2):170–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Myschik J, McBurney WT, Hennessy T, Phipps-Green A, Rades T, Hook S. Immunostimulatory biodegradable implants containing the adjuvant Quil-A--part II: in vivo evaluation. J Drug Target. 2008;16(3):224–32.PubMedCrossRefGoogle Scholar
  160. 160.
    Even M-P, Young K, Winter G, Hook S, Engert J. In vivo investigation of twin-screw extruded lipid implants for vaccine delivery. Eur J Pharm Biopharm. 2014;87(2):338–46.PubMedCrossRefGoogle Scholar
  161. 161.
    Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269–77.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Johansen P, Kündig TM. Parenteral vaccine administration: tried and true. Subunit Vaccine Delivery: Springer; 2015. p. 261–86.Google Scholar
  163. 163.
    Zuckerman JN. The importance of injecting vaccines into muscle : different patients need different needle sizes. BMJ: Bri Med J. 2000;321(7271):1237–8.CrossRefGoogle Scholar
  164. 164.
    Zehrung D, Jarrahian C, Wales A. Intradermal delivery for vaccine dose sparing: overview of current issues. Vaccine. 2013;31(34):3392–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Herzog C. Influence of parenteral administration routes and additional factors on vaccine safety and immunogenicity: a review of recent literature. Expert Rev Vaccines. 2014;13(3):399–415.PubMedCrossRefGoogle Scholar
  166. 166.
    Malm M, Tamminen K, Vesikari T, Blazevic V. Comparison of intramuscular, intranasal and combined administration of norovirus virus-like particle subunit vaccine candidate for induction of protective immune responses in mice. J Clin Cell Immunol. 2015;6(284):2.Google Scholar
  167. 167.
    Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med. 2009;206(13):2925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Bobbala S, Tamboli V, McDowell A, Mitra A, Hook S. Novel injectable pentablock copolymer based thermoresponsive hydrogels for sustained release vaccines. AAPS J. 2015:1–9.Google Scholar
  169. 169.
    Myschik J, Eberhardt F, Rades T, Hook S. Immunostimulatory biodegradable implants containing the adjuvant quil-a. Part I: physicochemical characterisation. J Drug Target. 2008;16(3):213–23.PubMedCrossRefGoogle Scholar
  170. 170.
    Tsang P, Gorse GJ, Strout CB, Sperling M, Greenberg DP, Ozol-Godfrey A, et al. Immunogenicity and safety of fluzone® intradermal and high-dose influenza vaccines in older adults ≥65 years of age: a randomized, controlled, phase II trial. Vaccine. 2014;32(21):2507–17.PubMedCrossRefGoogle Scholar
  171. 171.
    Gorse GJ, Falsey AR, Johnson CM, Morrison D, Fried DL, Ervin JE, et al. Safety and immunogenicity of revaccination with reduced dose intradermal and standard dose intramuscular influenza vaccines in adults 18–64 years of age. Vaccine. 2013;31(50):6034–40.PubMedCrossRefGoogle Scholar
  172. 172.
    Coleman BL, McNeil SA, Langley JM, Halperin SA, McGeer AJ. Differences in efficiency, satisfaction and adverse events between self-administered intradermal and nurse-administered intramuscular influenza vaccines in hospital workers. Vaccine. 2015;33(48):6635–40.PubMedCrossRefGoogle Scholar
  173. 173.
    Anassi E, Ndefo UA. Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. Pharm Ther. 2011;36(4):197–202.Google Scholar
  174. 174.
    Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE, et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine. 2015;33(52):7452–61.PubMedCrossRefGoogle Scholar
  175. 175.
    S-i F, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-[gamma]-producing NKT response induced with [alpha]-galactosylceramide-loaded DCs. Nat Immunol. 2002;3(9):867–74.CrossRefGoogle Scholar
  176. 176.
    Thapa P, Zhang G, Xia C, Gelbard A, Overwijk WW, Liu C, et al. Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine. 2009;27(25–26):3484–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Johansen P, ndig TM. Intralymphatic Immunotherapy and Vaccination in Mice. J Vis Exp. 2014(84):e51031.Google Scholar
  178. 178.
    Senti G, Kündig T. Intralymphatic immunotherapy. World Allergy Organ J. 2015;8(1):1–5.CrossRefGoogle Scholar
  179. 179.
    Jewell CM, López SCB, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci. 2011;108(38):15745–50.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Andorko JI, Tostanoski LH, Solano E, Mukhamedova M, Jewell CM. Intra-lymph node injection of biodegradable polymer particles. J Vis Exp. 2014;83:50984.Google Scholar
  181. 181.
    Slütter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA. Adjuvant effect of cationic liposomes and CpG depends on administration route. Journal of controlled release : official journal of the Controlled Release Society. 2011;154(2):123–30.CrossRefGoogle Scholar
  182. 182.
    Patravale V, Prabhu P. Potential of nanocarriers in antigen delivery: the path to successful vaccine delivery. Nanocarriers. 2014;1(1):10–45.CrossRefGoogle Scholar
  183. 183.
    Luongo D, D’Arienzo R, Bergamo P, Maurano F, Rossi M. Immunomodulation of Gut-associated lymphoid tissue: current perspectives. Int Rev Immunol. 2009;28(6):446–64.PubMedCrossRefGoogle Scholar
  184. 184.
    Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592–605.PubMedCrossRefGoogle Scholar
  185. 185.
    Davitt CJ, Lavelle EC. Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev. 2015;91:52–69.PubMedCrossRefGoogle Scholar
  186. 186.
    Wang S, Liu H, Zhang X, Qian F. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell. 2015;6(7):480–503.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.PubMedCrossRefGoogle Scholar
  188. 188.
    Liau JJ, Hook S, Prestidge CA, Barnes TJ. A lipid based multi-compartmental system: liposomes-in-double emulsion for oral vaccine delivery. Eur J Pharm Biopharm. 2015;97(Part A):15–21.PubMedCrossRefGoogle Scholar
  189. 189.
    Chan HT, Daniell H. Plant‐made oral vaccines against human infectious diseases—are we there yet? Plant Biotechnol J. 2015;13(8):1056–70.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Hayden CA, Fischer ME, Andrews BL, Chilton HC, Turner DD, Walker JH, et al. Oral delivery of wafers made from HBsAg-expressing maize germ induces long-term immunological systemic and mucosal responses. Vaccine. 2015;33(25):2881–6.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Lugton IW. Mucosa-associated lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria. Immunol Cell Biol. 1999;77(4):364–72.PubMedCrossRefGoogle Scholar
  192. 192.
    Amorij J-P, Kersten GFA, Saluja V, Tonnis WF, Hinrichs WLJ, Slütter B, et al. Towards tailored vaccine delivery: needs, challenges and perspectives. J Control Release. 2012;161(2):363–76.PubMedCrossRefGoogle Scholar
  193. 193.
    Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev. 2010;62(4–5):394–407.PubMedCrossRefGoogle Scholar
  194. 194.
    Li H-S, Singh B, Park T-E, Hong Z-S, Kang S-K, Cho C-S, et al. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination. Eur J Pharm Sci. 2015;80:16–25.PubMedCrossRefGoogle Scholar
  195. 195.
    Scherließ R. Nasal administration of vaccines. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit vaccine delivery. Advances in delivery science and technology. New York: Springer; 2015. p. 287–306.Google Scholar
  196. 196.
    Scherließ R, Mönckedieck M, Young K, Trows S, Buske S, Hook S. First in vivo evaluation of particulate nasal dry powder vaccine formulations containing ovalbumin in mice. Int J Pharm. 2015;479(2):408–15.PubMedCrossRefGoogle Scholar
  197. 197.
    Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62.PubMedCrossRefGoogle Scholar
  198. 198.
    Holt PG, Oliver J, Bilyk N, McMenamin C, McMenamin PG, Kraal G, et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 1993;177(2):397–407.PubMedCrossRefGoogle Scholar
  199. 199.
    Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med. 2004;10(9):927–34.PubMedCrossRefGoogle Scholar
  200. 200.
    Tonnis WF, Lexmond AJ, Frijlink HW, de Boer AH, Hinrichs WLJ. Devices and formulations for pulmonary vaccination. Expert Opin Drug Deliv. 2013;10(10):1383–97.PubMedCrossRefGoogle Scholar
  201. 201.
    Tonnis W, Huckriede AW, Hinrichs WJ, Frijlink H. Pulmonary administration of subunit vaccines. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit vaccine delivery. Advances in delivery science and technology. New York: Springer; 2015. p. 307–29.Google Scholar
  202. 202.
    Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–18.PubMedCrossRefGoogle Scholar
  203. 203.
    Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv. 2015;12(6):993–1008.PubMedCrossRefGoogle Scholar
  204. 204.
    Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JPY, DeSimone JM. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci. 2015;112(2):488–93.PubMedCrossRefGoogle Scholar
  205. 205.
    Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon J, Wang C, et al. Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J. 2010;12(3):330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Amidi M, Pellikaan HC, Hirschberg H, de Boer AH, Crommelin DJA, Hennink WE, et al. Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: preparation, characterization and evaluation in guinea pigs. Vaccine. 2007;25(37–38):6818–29.PubMedCrossRefGoogle Scholar
  208. 208.
    Amorij JP, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007;25(52):8707–17.PubMedCrossRefGoogle Scholar
  209. 209.
    Lu D, Garcia-Contreras L, Muttil P, Padilla D, Xu D, Liu J, et al. Pulmonary immunization using antigen 85-B polymeric microparticles to boost tuberculosis immunity. AAPS J. 2010;12(3):338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Pavot V, Rochereau N, Genin C, Verrier B, Paul S. New insights in mucosal vaccine development. Vaccine. 2012;30(2):142–54.PubMedCrossRefGoogle Scholar
  211. 211.
    Johansson E-L, Wassén L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun. 2001;69(12):7481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Lowry D. Vaginal delivery of subunit vaccines. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit vaccine delivery. Advances in delivery science and technology. New York: Springer; 2015. p. 331–46.Google Scholar
  213. 213.
    Jain S, Khomane K, Jain AK, Dani P. Nanocarriers for transmucosal vaccine delivery. Curr Nanosci. 2011;7(2):160–77.CrossRefGoogle Scholar
  214. 214.
    Gherardi MM, Pérez-Jiménez E, Nájera JL, Esteban M. Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization schedule. J Immunol. 2004;172(10):6209–20.PubMedCrossRefGoogle Scholar
  215. 215.
    Lee M-Y, Shin M-C, Yang VC. Transcutaneous antigen delivery system. BMB Rep. 2013;46(1):17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36(5):873–84.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Kaplan DH. In vivo function of langerhans cells and dermal DC. Trends Immunol. 2010;31(12):446–51.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Rattanapak T, Foged C, Hook S. Transcutaneous Immunization. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit Vaccine Delivery. Advances in Delivery Science and Technology. New York: Springer; 2015. p. 347–69.Google Scholar
  219. 219.
    Araki S, Wakabayashi R, Moniruzzaman M, Kamiya N, Goto M. Ionic liquid-mediated transcutaneous protein delivery with solid-in-oil nanodispersions. Med Chem Commun. 2015;6(12):2124–8.CrossRefGoogle Scholar
  220. 220.
    El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci. 2008;34(4–5):203–22.PubMedCrossRefGoogle Scholar
  221. 221.
    Cevc G, Schätzlein A, Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta Biomembr. 2002;1564(1):21–30.CrossRefGoogle Scholar
  222. 222.
    Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.PubMedCrossRefGoogle Scholar
  223. 223.
    Li N, Peng L-H, Chen X, Nakagawa S, Gao J-Q. Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int J Nanomedicine. 2011;6:3241–50.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Hansen S, Lehr C-M. Nanoparticles for transcutaneous vaccination. Microb Biotechnol. 2012;5(2):156–67.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol. 2012;64(11):1560–9.PubMedCrossRefGoogle Scholar
  226. 226.
    Li N, Peng L-H, Chen X, Zhang T-Y, Shao G-F, Liang W-Q, et al. Antigen-loaded nanocarriers enhance the migration of stimulated Langerhans cells to draining lymph nodes and induce effective transcutaneous immunization. Nanomed: Nanotechnol Biol Med. 2014;10(1):215–23.Google Scholar
  227. 227.
    Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol. 1982;62(3):481–8.PubMedCrossRefGoogle Scholar
  228. 228.
    Hirobe S, Okada N, Nakagawa S. Transcutaneous vaccines – current and emerging strategies. Expert Opin Drug Deliv. 2013;10(4):485–98.PubMedCrossRefGoogle Scholar
  229. 229.
    Dahlan A, Alpar HO, Stickings P, Sesardic D, Murdan S. Transcutaneous immunisation assisted by low-frequency ultrasound. Int J Pharm. 2009;368(1–2):123–8.PubMedCrossRefGoogle Scholar
  230. 230.
    Zhao YL, Murthy SN, Manjili MH, Guan LJ, Sen A, Hui SW. Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization. Vaccine. 2006;24(9):1282–90.PubMedCrossRefGoogle Scholar
  231. 231.
    Chen D, Weis KF, Chu Q, Erickson C, Endres R, Lively CR, et al. Epidermal powder immunization induces both cytotoxic T-lymphocyte and antibody responses to protein antigens of influenza and hepatitis B viruses. J Virol. 2001;75(23):11630–40.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Cassaday RD, Sondel PM, King DM, Macklin MD, Gan J, Warner TF, et al. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin Cancer Res. 2007;13(2):540–9.PubMedCrossRefGoogle Scholar
  233. 233.
    Engelke L, Winter G, Hook S, Engert J. Recent insights into cutaneous immunization: how to vaccinate via the skin. Vaccine. 2015;33(37):4663–74.PubMedCrossRefGoogle Scholar
  234. 234.
    Terhorst D, Fossum E, Baranska A, Tamoutounour S, Malosse C, Garbani M, et al. Laser-assisted intradermal delivery of adjuvant-free vaccines targeting XCR1+ dendritic cells induces potent antitumoral responses. J Immunol. 2015;194(12):5895–902.PubMedCrossRefGoogle Scholar
  235. 235.
    Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Burton S, Ng C-Y, Simmers R, Moeckly C, Brandwein D, Gilbert T, et al. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res. 2011;28(1):31–40.PubMedCrossRefGoogle Scholar
  237. 237.
    Martin CJ, Allender CJ, Brain KR, Morrissey A, Birchall JC. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release. 2012;158(1):93–101.PubMedCrossRefGoogle Scholar
  238. 238.
    DeMuth PC, Min Y, Irvine DJ, Hammond PT. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater. 2014;3(1):47–58.PubMedCrossRefGoogle Scholar
  239. 239.
    Rattanapak T, Birchall J, Young K, Ishii M, Meglinski I, Rades T, et al. Transcutaneous immunization using microneedles and cubosomes: mechanistic investigations using optical coherence tomography and two-photon microscopy. J Control Release. 2013;172(3):894–903.PubMedCrossRefGoogle Scholar
  240. 240.
    Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan Y-S, Kamiyama F, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials. 2015;57:50–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PharmacyUniversity of OtagoDunedinNew Zealand

Personalised recommendations