Pharmaceutical Research

, Volume 33, Issue 10, pp 2373–2387 | Cite as

Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date

  • Daniel Bobo
  • Kye J. Robinson
  • Jiaul Islam
  • Kristofer J. Thurecht
  • Simon R. CorrieEmail author
Expert Review


In this review we provide an up to date snapshot of nanomedicines either currently approved by the US FDA, or in the FDA clinical trials process. We define nanomedicines as therapeutic or imaging agents which comprise a nanoparticle in order to control the biodistribution, enhance the efficacy, or otherwise reduce toxicity of a drug or biologic. We identified 51 FDA-approved nanomedicines that met this definition and 77 products in clinical trials, with ~40% of trials listed in started in 2014 or 2015. While FDA approved materials are heavily weighted to polymeric, liposomal, and nanocrystal formulations, there is a trend towards the development of more complex materials comprising micelles, protein-based NPs, and also the emergence of a variety of inorganic and metallic particles in clinical trials. We then provide an overview of the different material categories represented in our search, highlighting nanomedicines that have either been recently approved, or are already in clinical trials. We conclude with some comments on future perspectives for nanomedicines, which we expect to include more actively-targeted materials, multi-functional materials (“theranostics”) and more complicated materials that blur the boundaries of traditional material categories. A key challenge for researchers, industry, and regulators is how to classify new materials and what additional testing (e.g. safety and toxicity) is required before products become available.


clinical trials FDA nanomedicine nanoparticles nanopharmaceuticals nanotherpeutics 



Chemotherapy containing cyclophosmphamide, doxorubicin, vincristine, and prednisolone


Chronic Kidney Disease


Critical micelle concentration


Cyclic arginine-glycine-aspartic acid


Enhanced permeability and retention


Investigational device exemption


Investigational New Drug


Molecularly targeted agents


Albumin bound nanoparticles


Nanotechnology Characterization Laboratory


New Drug Application






Poly (ethylene glycol)


Polyactide-co-glycolic acid




Prostate-specific membrane antigen


Peripheral T-cell lymphomas



We acknowledge funding from the National Health and Medical Research Council (APP1099231 KJT), the Australian Research Council (FT110100284, DP140100951 (KJT), DE130100800 (SRC)), National Breast Cancer Foundation (NC-14-037), and Centre of Excellence in Convergent BioNano Science and Technology (CE140100036 (SRC, KJT)) and thank the Ochsner Clinical School of New Orleans, LA (DPB).


  1. 1.
    Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Chaudhuri RG, Paria S. Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–433.CrossRefGoogle Scholar
  3. 3.
    Cimalla P, Werner T, Gaertner M, Mueller C, Walther J, Wittig D, et al. Magnetomotive imaging of iron oxide nanoparticles as cellular contrast agents for optical coherence tomography. Proc Spie. 2013;8802.Google Scholar
  4. 4.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79.CrossRefPubMedGoogle Scholar
  5. 5.
    Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–61.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Eifler AC, Thaxton CS. Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. In: Hurst SJ, editor. Biomedical nanoetechnology: methods and protocols. methods in molecular biology. 7262011. p. 325–38.Google Scholar
  9. 9.
    Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed-Nanotechnol Biology and Med. 2013;9(1):1–14.CrossRefGoogle Scholar
  10. 10.
    Nel AE, Maedler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.CrossRefPubMedGoogle Scholar
  11. 11.
    Rolfe BE, Blakey I, Squires O, Peng H, Boase NRB, Alexander C, et al. Multimodal polymer nanoparticles with combined F-19 magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J Am Chem Soc. 2014;136(6):2413–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fox ME, Szoka FC, Frechet JMJ. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res. 2009;42(8):1141–51.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007;4:10.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Duncan R, Sat YN. Tumour targeting by enhanced permeability and retention (EPR) effect. Ann Oncol. 1998;9:39.CrossRefGoogle Scholar
  17. 17.
    Casi G, Neri D. Antibody–drug conjugates: basic concepts, examples and future perspectives. J Control Release. 2012;161(2):422–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Diamantis N, Banerji U. Antibody-drug conjugates—an emerging class of cancer treatment. Br J Cancer. 2016;114(4):362–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tinkle S, McNeil SE, Muehlebach S, Bawa R, Borchard G, Barenholz Y, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann Reports. 2014;1313:35–56.Google Scholar
  20. 20.
    Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release. 2015;220:571–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Nanotechnology Characterization Laboratory: National Cancer Institute US National Institues of Health; 2016 [2/16/2016]. Available from:
  22. 22.
    NCT02549248: Nanoparticles Analysis in Lung and Bronchi During Various Pulmonary Interstitial Diseases and Relationships With Their Aetiology (NANOPI) [Full text view]. Available from: Scholar
  23. 23.
    Registered Clinical Trial Database [Internet]. 2016 [cited 2/15/2016]. Available from:
  24. 24.
    Schutz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M, Consortium N. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine-Uk. 2013;8(3):449–67.CrossRefGoogle Scholar
  25. 25.
    Svenson S. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdisciplinary Reviews. Nanomed Nanobiotechnol. 2014;6(2):125–35.CrossRefGoogle Scholar
  26. 26.
    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Cures P. Neglected disease research and development: is the global financial crisis changing R&D. London: Policy Cures; 2011.Google Scholar
  28. 28.
    Tsoulfas G. The impact of the European financial crisis on clinical research within the European union or “when life gives you lemons, make lemonade”. Hippokratia. 2012;16(1):6–10.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cui JW, van Koeverden MP, Mullner M, Kempe K, Caruso F. Emerging methods for the fabrication of polymer capsules. Adv Colloid Interf Sci. 2014;207:14–31.CrossRefGoogle Scholar
  30. 30.
    Duncan R. Polymer therapeutics: Top 10 selling pharmaceuticals - What next? J Control Release. 2014;190:371–80.CrossRefPubMedGoogle Scholar
  31. 31.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology. 1998;50(3):701–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Alconcel SNS, Baas AS, Maynard HD. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym Chem. 2011;2(7):1442–8.CrossRefGoogle Scholar
  33. 33.
    Benbrook DM. Biotechnology and biopharmaceuticals: transforming proteins and genes into drugs, 2nd edition. Clinic infect Dis: Off Publ Infect DisSoc Am. 2015;60(2):331–2.CrossRefGoogle Scholar
  34. 34.
    Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu SF, et al. A novel PEGylated interferon Beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol. 2012;52(6):798–808.CrossRefPubMedGoogle Scholar
  35. 35.
    Ing M, Gupta N, Teyssandier M, Maillere B, Pallardy M, Delignat S, et al. Immunogenicity of long-lasting recombinant factor VIII products. Cell Immunol. 2016;301:40–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Awada A, Garcia AA, Chan S, Jerusalem GHM, Coleman RE, Huizing MT, et al. Two schedules of etirinotecan pegol (NKTR-102) in patients with previously treated metastatic breast cancer: a randomised phase 2 study. Lancet Oncol. 2013;14(12):1216–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Paz-Ares L, Ross H, O’Brien M, Riviere A, Gatzemeier U, Von Pawel J, et al. Phase III trial comparing paclitaxel poliglumex vs docetaxel in the second-line treatment of non-small-cell lung cancer. Br J Cancer. 2008;98(10):1608–13.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Berges R. Eligard (R): Pharmacokinetics, effect on testosterone and PSA levels and tolerability. Eur Urol Suppl. 2005;4(5):20–5.CrossRefGoogle Scholar
  39. 39.
    Svenson S, Wolfgang M, Hwang J, Ryan J, Eliasof S. Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. J Control Release. 2011;153(1):49–55.CrossRefPubMedGoogle Scholar
  40. 40.
    Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res-Dordr. 2010;27(12):2569–89.CrossRefGoogle Scholar
  41. 41.
    Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128).Google Scholar
  43. 43.
    Ashton S, Song YH, Nolan J, Cadogan E, Murray J, Odedra R, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med. 2016;8(325):325ra17–ra17.CrossRefPubMedGoogle Scholar
  44. 44.
    Rijcken CJF, Veldhuis TFJ, Ramzi A, Meeldijk JD, van Nostrum CF, Hennink WE. Novel fast degradable thermosensitive polymeric micelles based on PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules. 2005;6(4):2343–51.CrossRefPubMedGoogle Scholar
  45. 45.
    Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharmaceut. 2009;6(3):659–68.CrossRefGoogle Scholar
  46. 46.
    Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238.CrossRefPubMedGoogle Scholar
  47. 47.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.CrossRefPubMedGoogle Scholar
  48. 48.
    Vaage J, Mayhew E, Lasic D, Martin F. Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating. Int J Cancer. 1992;51(6):942–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Saif Ur Rehman S, Lim K, Wang-Gillam A. Nanoliposomal irinotecan plus fluorouracil and folinic acid: a new treatment option in metastatic pancreatic cancer. Exp Rev Anticancer Ther. 2016:null-null.Google Scholar
  50. 50.
    Wang-Gillam A, Li C-P, Bodoky G, Dean A, Shan Y-S, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. The Lancet 387(10018):545–57.Google Scholar
  51. 51.
    James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (Royal College of Radiologists (Great Britain)). 1994;6(5):294–6.CrossRefGoogle Scholar
  52. 52.
    Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987–92.PubMedGoogle Scholar
  53. 53.
    Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents. 2001;17(3):161–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Arnold J, Kilmartin D, Olson J, Neville S, Robinson K, Laird A, et al. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: Two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization-verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2001;131(5):541–60.CrossRefGoogle Scholar
  55. 55.
    May JP, Li S-D. Hyperthermia-induced drug targeting. Exp Opin Drug Deliv. 2013;10(4):511–27.CrossRefGoogle Scholar
  56. 56.
    Qin L, Wang C-Z, Fan H-J, Zhang C-J, Zhang H-W, Lv M-H, et al. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol Lett. 2014;8(5):2000–6.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane((R)), a novel Cremophor((R))-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17(8):1263–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Desai N, Trieu V, Yao ZW, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of Cremophor-free, albumin-bound paclitaxel, ABI-007, compared with Cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317–24.CrossRefPubMedGoogle Scholar
  59. 59.
    Fuentes AC, Szwed E, Spears CD, Thaper S, Dang LH, Dang NH. Denileukin diftitox (Ontak) as maintenance therapy for peripheral T-Cell lymphomas: three cases with sustained remission. Case Pep Oncol Med. 2015;2015:123756.Google Scholar
  60. 60.
    Foss FM, Sjak-Shie N, Goy A, Jacobsen E, Advani R, Smith MR, et al. A multicenter phase II trial to determine the safety and efficacy of combination therapy with denileukin diftitox and cyclophosphamide, doxorubicin, vincristine and prednisone in untreated peripheral T-cell lymphoma: the CONCEPT study. Leukemia lymphoma. 2013;54(7):1373–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Foss F. Clinical experience with Denileukin Diftitox (ONTAK). Semin Oncol. 2006;33(Supplement 3):11–6.CrossRefGoogle Scholar
  62. 62.
    Chawla SP, Chua VS, Fernandez L, Quon D, Blackwelder WC, Gordon EM, et al. Advanced phase I/II studies of targeted gene delivery in vivo: intravenous Rexin-G for gemcitabine-resistant metastatic pancreatic cancer. Mol Ther. 2010;18(2):435–41.CrossRefPubMedGoogle Scholar
  63. 63.
    Gordon EM, Hall FL. Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 2010;10(5):819–32.CrossRefPubMedGoogle Scholar
  64. 64.
    Salah EDTA, Bakr MM, Kamel HM, Abdel KM. Magnetite nanoparticles as a single dose treatment for iron deficiency anemia. Google Patents. 2010.Google Scholar
  65. 65.
    Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging. 2015;41(4):884–98.CrossRefPubMedGoogle Scholar
  66. 66.
    Wang Y-XJ. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015;21(47):13400–2.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperther. 2008;24(6):467–74.CrossRefGoogle Scholar
  68. 68.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011;103(2):317–24.CrossRefGoogle Scholar
  69. 69.
    Kharlamov AN, Gabinsky JL. Plasmonic photothermic and stem cell therapy of atherosclerotic plaque as a novel nanotool for angioplasty and artery remodeling. Rejuvenation Res. 2012;15(2):222–30.CrossRefPubMedGoogle Scholar
  70. 70.
    Zeng S, Yu X, Law W-C, Zhang Y, Hu R, Dinh X-Q, et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors Actuators B Chem. 2013;176:1128–33.CrossRefGoogle Scholar
  71. 71.
    Sanders M. A review of controlled clinical trials examining the effects of antimalarial compounds and gold compounds on radiographic progression in rheumatoid arthritis. J Rheumatol. 2000;27(2):523–9.PubMedGoogle Scholar
  72. 72.
    Tomic S, Dokic J, Vasilijic S, Ogrinc N, Rudolf R, Pelicon P, et al. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE. 2014;9(5), e96584.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Qiu TA, Bozich JS, Lohse SE, Vartanian AM, Jacob LM, Meyer BM, et al. Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environ Sci: Nano. 2015;2(6):615–29.Google Scholar
  74. 74.
    Libutti SK, Paciotti GF, Byrnes AA, Alexander Jr HR, Gannon WE, Walker M, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–49.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kharlamov AN, Tyurnina AE, Veselova VS, Kovtun OP, Shur VY, Gabinsky JL. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale. 2015;7(17):8003–15.CrossRefPubMedGoogle Scholar
  76. 76.
    Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, et al. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol. 2014;9(1):150.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pottier A, Borghi E, Levy L. New use of metals as nanosized radioenhancers. Anticancer Res. 2014;34(1B):443–53.PubMedGoogle Scholar
  78. 78.
    Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye YP, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260).Google Scholar
  79. 79.
    Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1):129–39.CrossRefPubMedGoogle Scholar
  81. 81.
    Möschwitzer J, Müller RH. New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotechnol. 2006;6(9–10):3145–53.CrossRefPubMedGoogle Scholar
  82. 82.
    Sirolimus: AY 22989, NSC 226080, NSC 606698, Rapamycin, Rapamune. Drugs in R & D. 1999;1(1):100–7.Google Scholar
  83. 83.
    Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine (London, England). 2011;6(5):815–35.CrossRefGoogle Scholar
  84. 84.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceut. 2008;5(4):505–15.CrossRefGoogle Scholar
  85. 85.
    Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharmaceut. 2008;5(4):496–504.CrossRefGoogle Scholar
  86. 86.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.CrossRefPubMedGoogle Scholar
  87. 87.
    Kendall M, Lynch I. Long-term monitoring for nanomedicine implants and drugs. Nat Nanotechnol. 2016;11(3):206–10.CrossRefPubMedGoogle Scholar
  88. 88.
    Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Stylianopoulos T, Jain RK. Design considerations for nanotherapeutics in oncology. Nanomed-Nanotechnol Biol Med. 2015;11(8):1893–907.CrossRefGoogle Scholar
  90. 90.
    Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther. 2013;21(5):1096–103.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, et al. Nanoparticle-mediated systemic delivery of sirna for treatment of cancers and viral infections. Theranostics. 2014;4(9):872–92.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64(13):1394–416.CrossRefPubMedGoogle Scholar
  93. 93.
    Thurecht KJ, Blakey I, Peng H, Squires O, Hsu S, Alexander C, et al. Functional hyperbranched polymers: toward targeted in vivo F-19 magnetic resonance imaging using designed macromolecules. J Am Chem Soc. 2010;132(15):5336−+.CrossRefPubMedGoogle Scholar
  94. 94.
    Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicological considerations of clinically applicable nanoparticles. Nano Today. 2011;6(6):585–607.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniel Bobo
    • 1
    • 2
    • 3
    • 4
  • Kye J. Robinson
    • 4
    • 5
  • Jiaul Islam
    • 2
    • 4
    • 5
  • Kristofer J. Thurecht
    • 1
    • 2
    • 4
  • Simon R. Corrie
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Centre for Advanced ImagingUniversity of QueenslandSt LuciaAustralia
  2. 2.Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaAustralia
  3. 3.School of Medicine, Faculty of Medicine and Biomedical SciencesUniversity of QueenslandSt LuciaAustralia
  4. 4.ARC Centre of Excellence in Convergent Bio-Nano Science and TechnologyQueensland nodeSt LuciaAustralia
  5. 5.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations