Pharmaceutical Research

, Volume 33, Issue 8, pp 2010–2024 | Cite as

Nanoparticles Based on Linear and Star-Shaped Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Copolymers for the Delivery of Antitubulin Drug

  • Karim S. Shalaby
  • Mahmoud E. Soliman
  • Giulia Bonacucina
  • Marco Cespi
  • Giovanni F. Palmieri
  • Omaima A. Sammour
  • Abdelhameed A. El Shamy
  • Lisbeth Illum
  • Luca Casettari
Research Paper



Biodegradable polymeric nanoparticles of different architectures based on polyethylene glycol-co-poly(ε-caprolactone) block copolymers have been loaded with noscapine (NOS) to study their effect on its anticancer activity. It was intended to use solubility of NOS in an acidic environment and ability of the nanoparticles to passively target drugs into cancer tissue to modify the NOS pharmacokinetic properties and reduce the requirement for frequent injections.


Linear and star-shaped copolymers were synthetized and used to formulate NOS loaded nanoparticles. Cytotoxicity was performed using a sulforhodamine B method on MCF-7 cells, while biocompatibility was determined on rats followed by hematological and histopathological investigations.


Formulae with the smallest particle sizes and adequate entrapment efficiency revealed that NOS loaded nanoparticles showed higher extent of release at pH 4.5. Colloidal stability suggested that nanoparticles would be stable in blood when injected into the systemic circulation. Loaded nanoparticles had IC50 values lower than free drug. Hematological and histopathological studies showed no difference between treated and control groups. Pharmacokinetic analysis revealed that formulation P1 had a prolonged half-life and better bioavailability compared to drug solution.


Formulation of NOS into biodegradable polymeric nanoparticles has increased its efficacy and residence on cancer cells while passively avoiding normal body tissues.

Graphical Abstract


noscapine passive targeting pH dependent release polyethylene glycol-co-poly(ε-caprolactone) (PEG-co-PCL) polymeric nanoparticles 



Atomic force microscopy


Critical micelle concentration


Dynamic light scattering


High performance liquid chromatography






Polyethylene glycol-co-poly(ε-caprolactone) block copolymers


Poly(lactic acid)




Reticuloendothelial system



Supplementary material

11095_2016_1939_MOESM1_ESM.docx (526 kb)
ESM 1 (DOCX 526 kb)


  1. 1.
    Ding J, Xiao C, Li Y, Cheng Y, Wang N, He C, et al. Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Second Symp Innov Polym Control Deliv SIPCD 2012. 2013;169:193–203.Google Scholar
  2. 2.
    Wang J, Xu W, Guo H, Ding J, Chen J, Guan J, et al. Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids Surf B: Biointerfaces. 2015;135:283–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen J, Ding J, Xiao C, Zhuang X, Chen X. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomater Sci. 2015;3:988–1001.CrossRefPubMedGoogle Scholar
  4. 4.
    Shalaby KS, Soliman ME, Casettari L, Bonacucina G, Cespi M, Palmieri GF, et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomedicine. 2014;9:4953–64.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63:623–39.CrossRefPubMedGoogle Scholar
  6. 6.
    Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48:416–27.CrossRefPubMedGoogle Scholar
  7. 7.
    Uzgiris EE. Tumor microvasculature: endothelial leakiness and endothelial pore size distribution in a breast cancer model. Breast Cancer Basic Clin Res. 2008;1:83–90.Google Scholar
  8. 8.
    Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16:295–309.CrossRefGoogle Scholar
  10. 10.
    Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs. 2012;30:1621–7.CrossRefGoogle Scholar
  11. 11.
    Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi A, Yamamoto Y, Yasunaga M, Koga Y, Kuroda J-I, Takigahira M, et al. NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 2013;104:920–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, et al. Development of the polymer micelle carrier system for doxorubicin. Proc Int Symp Tumor Target Deliv Syst. 2001;74:295–302.Google Scholar
  15. 15.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95:4607–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci. 2008;97:3518–90.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pitt CG, Gratzl MM, Jeffcoat AR, Zweidinger R, Schindler A. Sustained drug delivery systems. II: factors affecting release rates from poly(ε-caprolactone) and related biodegradable polyesters. J Pharm Sci. 1979;68:1534–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Shiaw-Guang Hu D, Liu H-J. Effect of soft segment on degradation kinetics in polyethylene glycol/poly(l-lactide) block copolymers. Polym Bull. 1993;30:669–76.CrossRefGoogle Scholar
  19. 19.
    Chandra R, Madan J, Singh P, Chandra A, Kumar P, Tomar V, et al. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells. Curr Drug Metab. 2012;13:1476–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Younes H, Cohn D. Phase separation in poly(ethylene glycol)/poly(lactic acid) blends. Eur Polym J. 1988;24:765–73.CrossRefGoogle Scholar
  21. 21.
    Wu Y, Jiao F, Han S, Fan T, Liu Y, Li W, et al. Construction of amphiphilic copolymer nanoparticles based on hyperbranched Poly (Amine-Ester) and 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphoethanolamine as drug carriers for cancer therapy. Nanomed Nanotechnol Biol Med. 2011;7:945–54.CrossRefGoogle Scholar
  22. 22.
    Layre A, Couvreur P, Chacun H, Richard J, Passirani C, Requier D, et al. Novel composite core-shell nanoparticles as busulfan carriers. J Control Release. 2006;111:271–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Li D, Ding JX, Tang ZH, Sun H, Zhuang XL, Xu JZ, et al. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers. Int J Nanomedicine. 2012;7:2687–97.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Li D, Sun H, Ding J, Tang Z, Zhang Y, Xu W, et al. Polymeric topology and composition constrained polyether-polyester micelles for directional antitumor drug delivery. Acta Biomater. 2013;9:8875–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Li T, Han R, Wang M, Liu C, Jing X, Huang Y. Fusiform micelles from nonlinear poly(ethylene glycol)/polylactide copolymers as biodegradable drug carriers. Macromol Biosci. 2011;11:1570–8.PubMedGoogle Scholar
  26. 26.
    Cespi M, Casettari L, Bonacucina G, Giorgioni G, Perinelli DR, Palmieri GF. Evaluation of methoxy polyethylene glycol-polylactide diblock copolymers as additive in hypromellose film coating. Polym Adv Technol. 2013;24:1018–24.CrossRefGoogle Scholar
  27. 27.
    Maglio G, Nicodemi F, Conte C, Palumbo R, Tirino P, Panza E, et al. Nanocapsules based on linear and Y-shaped 3-miktoarm star-block peo-pcl copolymers as sustained delivery system for hydrophilic molecules. Biomacromolecules. 2011;12:4221–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Dahlström B, Mellstrand T, Löfdahl C-G, Johansson M. Pharmakokinetic properties of noscapine. Eur J Clin Pharmacol. 1982;22:535–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Nayak KP, Brochmann-Hanssen E, Way EL. Biological disposition of noscapine I. Kinetics of metabolism, urinary excretion, and organ distribution. J Pharm Sci. 1965;54:191–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Perinelli DR, Bonacucina G, Cespi M, Naylor A, Whitaker M, Palmieri GF, et al. Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. Int J Pharm. 2014;468:250–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Li W, Zhang W, Yang X, Xie Z, Jing X. Biodegradable polymersomes from four-arm PEG-b-PDLLA for encapsulating hemoglobin. J Appl Polym Sci. 2014;131.Google Scholar
  32. 32.
    D’Addio SM, Saad W, Ansell SM, Squiers JJ, Adamson DH, Herrera-Alonso M, et al. Effects of block copolymer properties on nanocarrier protection from in vivo clearance. J Control Release. 2012;162:208–17.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kanaoka S, Sueokaw M, Sawamoto M, Higashimur T. Star-shaped polymer by living cationic polymerization. VII amphiphilic graft polymers of vinyl ethers with hydroxyl groups: synthesis and host-guest interaction. J Polym Sci Polym Chem Ed. 1993;31:2513–21.CrossRefGoogle Scholar
  34. 34.
    Madan J, Dhiman N, Parmar VK, Sardana S, Bharatam PV, Aneja R, et al. Inclusion complexes of noscapine in β-cyclodextrin offer better solubility and improved pharmacokinetics. Cancer Chemother Pharmacol. 2010;65:537–48.CrossRefPubMedGoogle Scholar
  35. 35.
    Ouyang C, Liu Q, Zhao S, Ma G, Zhang Z, Song C. Synthesis and characterization of star-shaped poly (lactide-co-glycolide) and its drug-loaded microspheres. Polym Bull. 2012;68:27–36.CrossRefGoogle Scholar
  36. 36.
    Yoon K, Kang HC, Li L, Cho H, Park M-K, Lee E, et al. Amphiphilic poly(ethylene glycol)-poly(?-caprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polym Chem. 2015;6:531–42.CrossRefGoogle Scholar
  37. 37.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.CrossRefGoogle Scholar
  38. 38.
    Leo E, Brina B, Forni F, Vandelli MA. In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm. 2004;278:133–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Tang J, Liu Z, Zhang Y, Wang L, Li D, Ding J, et al. Fluorofenidone-loaded PLGA microspheres for targeted treatment of paraquat-induced acute lung injury in rats. RSC Adv. 2015;5:30153–9.CrossRefGoogle Scholar
  40. 40.
    Zhang J, Men K, Gu Y, Wang X, Gou M, Guo G, et al. Preparation of core cross-linked PCL-PEG-PCL micelles for doxorubicin delivery in vitro. J Nanosci Nanotechnol. 2011;11:5054–61.CrossRefPubMedGoogle Scholar
  41. 41.
    Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH. Self-assembled biodegradable amphiphilic PEG-PCL-PEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials. 2011;32:7721–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Madan J, Dhiman N, Sardana S, Aneja R, Chandra R, Katyal A. Long-circulating poly(ethylene glycol)-grafted gelatin nanoparticles customized for intracellular delivery of noscapine: preparation, in-vitro characterization, structure elucidation, pharmacokinetics, and cytotoxicity analyses. Anti-Cancer Drugs. 2011;22:543–55.CrossRefPubMedGoogle Scholar
  43. 43.
    Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomedicine. 2010;5:525–32.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chollet DF, Ruols C, Arnera V. Determination of noscapine in human plasma using solid-phase extraction and high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1997;701:81–5.CrossRefGoogle Scholar
  45. 45.
    Abulateefeh SR, Saeed AO, Aylott JW, Chan WC, Garnett MC, Saunders BR, et al. Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chem. Commun. 2009;6068–70.Google Scholar
  46. 46.
    Kumar S, Kumar R, Dwivedi A, Pandey AK. In vitro antioxidant, antibacterial, and cytotoxic activity and in vivo effect of Syngonium podophyllum and Eichhornia crassipes leaf extracts on isoniazid induced oxidative stress and hepatic markers. BioMed Res Int. 2014;2014:459452.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12.CrossRefPubMedGoogle Scholar
  48. 48.
    Winter CA, Flataker L. Toxicity studies on noscapine. Toxicol Appl Pharmacol. 1961;3:96–106.CrossRefPubMedGoogle Scholar
  49. 49.
    Aneja R, Dhiman N, Idnani J, Awasthi A, Arora SK, Chandra R, et al. Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent. Cancer Chemother Pharmacol. 2007;60:831–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel. Comput Methods Prog Biomed. 2010;99:306–14.CrossRefGoogle Scholar
  51. 51.
    Moura JA, Valduga CJ, Tavares ER, Kretzer IF, Maria DA, Maranhão RC. Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int J Nanomedicine. 2011;6:2285–95.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Sachse C, Henkel E. An evaluation of the CELL-DYN 17000® haematology analyser: automated cell counting and three-part leucocyte differentiation. Clin Lab Haematol. 1996;18:171–80.CrossRefPubMedGoogle Scholar
  53. 53.
    Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces. 1999;16:3–27.CrossRefGoogle Scholar
  54. 54.
    Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159:312–23.CrossRefPubMedGoogle Scholar
  55. 55.
    Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112:630–48.CrossRefPubMedGoogle Scholar
  56. 56.
    Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev. 1995;16:195–214.CrossRefGoogle Scholar
  57. 57.
    Zamani S, Khoee S. Preparation of core–shell chitosan/PCL-PEG triblock copolymer nanoparticles with ABA and BAB morphologies: effect of intraparticle interactions on physicochemical properties. Polymer. 2012;53:5723–36.CrossRefGoogle Scholar
  58. 58.
    Roos WH, Bruinsma R, Wuite GJL. Physical virology. Nat Phys. 2010;6:733–43.CrossRefGoogle Scholar
  59. 59.
    Zhang L, Hu Y, Jiang X, Yang C, Lu W, Yang YH. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Control Release. 2004;96:135–48.CrossRefPubMedGoogle Scholar
  60. 60.
    Manisha K, Maheshwar S, Madhuri S. Encapsulation of berberine in nano-sized PLGA synthesized by emulsification method. ISRN Nanotechnol. 2012;2012:1–9.Google Scholar
  61. 61.
    Madan J, Gundala SR, Kasetti Y, Bharatam PV, Aneja R, Katyal A, et al. Enhanced noscapine delivery using estrogen-receptor-targeted nanoparticles for breast cancer therapy. Anti-Cancer Drugs. 2014;25:704–16.PubMedGoogle Scholar
  62. 62.
    Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–8.PubMedGoogle Scholar
  63. 63.
    de Graaf AJ, Boere KWM, Kemmink J, Fokkink RG, van Nostrum CF, Rijkers DTS, et al. Looped structure of flowerlike micelles revealed by 1H NMR relaxometry and light scattering. Langmuir. 2011;27:9843–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine. 2010;5:1057–65.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.CrossRefPubMedGoogle Scholar
  66. 66.
    Gibaldi M, Weiner ND. Biphasic elimination of noscapine. J Pharm Sci. 1966;55:769–71.CrossRefPubMedGoogle Scholar
  67. 67.
    Madan J, Pandey RS, Jain UK, Katare OP, Aneja R, Katyal A. Sterically stabilized gelatin microassemblies of noscapine enhance cytotoxicity, apoptosis and drug delivery in lung cancer cells. Colloids Surf B: Biointerfaces. 2013;107:235–44.CrossRefPubMedGoogle Scholar
  68. 68.
    Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomed Nanotechnol Biol Med. 2013;9:492–503.CrossRefGoogle Scholar
  69. 69.
    Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP. Preparation and characterization of HA-PEG-PCL intelligent core corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16:464–78.CrossRefPubMedGoogle Scholar
  70. 70.
    Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415–26.CrossRefPubMedGoogle Scholar
  71. 71.
    Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33:8167–76.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karim S. Shalaby
    • 1
  • Mahmoud E. Soliman
    • 1
  • Giulia Bonacucina
    • 2
  • Marco Cespi
    • 2
  • Giovanni F. Palmieri
    • 2
  • Omaima A. Sammour
    • 1
  • Abdelhameed A. El Shamy
    • 1
  • Lisbeth Illum
    • 3
  • Luca Casettari
    • 4
  1. 1.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyAin Shams UniversityCairoEgypt
  2. 2.School of PharmacyUniversity of CamerinoCamerinoItaly
  3. 3.IDentityNottinghamUK
  4. 4.Department of Biomolecular Sciences, School of PharmacyUniversity of UrbinoUrbinoItaly

Personalised recommendations