Skip to main content

Advertisement

Log in

In Vivo and In Vitro Evidence for Brain Uptake of 4-Phenylbutyrate by the Monocarboxylate Transporter 1 (MCT1)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

4-Phenylbutyrate (4-PBA) is expected to be a potential therapeutic for several neurodegenerative diseases. These activities require 4-PBA transport into the brain across the blood-brain barrier (BBB). The objective of the present study was to characterize the brain transport mechanism of 4-PBA through the BBB.

Methods

The brain transport of 4-PBA across the BBB was investigated following intravenous (IV) injection and internal carotid artery perfusion (ICAP) in vivo. The mechanism of transport was examined using TR-BBB cells, an in vitro model of the BBB.

Results

The volume of distribution (VD) of 4-PBA by rat brain was about 7-fold greater than that of sucrose, a BBB impermeable vascular space marker, suggesting the blood-to-brain transport of 4-PBA through the BBB in the physiological state. [14C]4-PBA uptake by TR-BBB cells showed time-, pH- and concentration-dependence with a K m of 13.4 mM at pH 7.4 and 3.22 mM at pH 6.0. The uptake was Na+ independent, and was significantly inhibited by alpha-cyano-4-hydroxycinnamate (a typical inhibitor for monocarboxylate transport), endogenous monocarboxylate compounds and monocarboxylic drugs. Lactate and valproate competitively inhibited [14C]4-PBA uptake with K i value of 13.5 mM and 7.47 mM, respectively. These results indicate the role of monocarboxylate transporters (MCTs) in 4-PBA transport into the brain at the BBB. TR-BBB cells expressed mRNA of rMCT1, 2, and 4, especially, rMCT1 showed high mRNA expression level. In addition, [14C]4-PBA uptake was inhibited by rMCT1 specific small interfering RNA.

Conclusion

The transport mechanism of 4-PBA from blood to brain across the BBB likely involves MCT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

4- PBA:

4-Phenylbutyrate

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood-brain barrier

CHC:

Alpha-cyano-4-hydroxycinnamate

CSF:

Cerebrospinal fluid

ECF:

Extracellular fluid

ER:

Endoplasmic reticulum

FCCP:

Carbonyl cyanide p-trifluoromethoxyphenylhydrazone

GHB:

γ–Hydroxybutyrate

HD:

Huntington disease

HDAC:

Histone deacetylase

ICAP:

Internal carotid artery perfusion

ID:

Injected dose

IV:

Intravenous

KHB:

Krebs–Henseleit buffer

K i :

Inhibition constant

K m :

Michaelis-Menten constant

K ns :

Nonsaturable uptake clearance

MCT:

Monocarboxylate transporter

NMDG:

N-methyl-D-glucamine

PAH:

p-Aminohippurate

PD:

Parkinson’s disease

PS:

BBB permeability-surface area

SD:

Sprague-Dawley

SMCT:

Na+ coupled monocarboxylate transporter

TAUT:

Taurine transporter

TR-BBB cells:

Conditionally immortalized rat brain capillary endothelial cell line

Vd :

Terminal brain/plasma ratio

VD :

Volume of distribution

V max :

Maximum rate of uptake

VPA:

Valproate

References

  1. Fessler EB, Chibane FL, Wang Z, Chuang DM. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Des. 2013;19(28):5105–20.

    Article  CAS  PubMed  Google Scholar 

  2. Corbett GT, Roy A, Pahan K. Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy. J Biol Chem. 2013;288(12):8299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burrows JA, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: A potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci U S A. 2000;97(4):1796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol Cell Physiol. 2000;278(2):C259–67.

    CAS  PubMed  Google Scholar 

  5. Perlmutter DH. Chemical chaperons: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res. 2002;52:832–6.

    Article  PubMed  Google Scholar 

  6. Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugai M, Omura T, et al. Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem. 2006;97(5):1259–68.

    Article  CAS  PubMed  Google Scholar 

  7. Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF. Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromol Med. 2004;5(3):235–41.

    Article  CAS  Google Scholar 

  8. Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005;280(1):556–63.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem. 2011;286(17):14941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ricobaraza A, Cuadrado-Tejedor M, Marco S, Pérez-Otaño I, García-Osta A. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus. 2012;22(5):1040–50.

    Article  CAS  PubMed  Google Scholar 

  11. Cuadrado-Tejedor M, Ricobaraza AL, Torrijo R, Franco R, Garcia-Osta A. Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer’s disease-like phenotype of a commonly used mouse model. Curr Pharm Des. 2013;19(28):5076–84.

    Article  CAS  PubMed  Google Scholar 

  12. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol. 1997;273(1 Pt 1):E207–13.

    CAS  PubMed  Google Scholar 

  13. Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009;65(11):1063–70.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya I, Boje KM. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier. J Pharmacol Exp Ther. 2004;311(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  15. Fischer W, Praetor K, Metzner L, Neubert RH, Brandsch M. Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Eur J Pharm Biopharm. 2008;70(2):486–92.

    Article  CAS  PubMed  Google Scholar 

  16. Lee NY, Lee KB, Kang YS. Pharmacokinetics, placenta, and brain uptake of paclitaxel in pregnant rats. Cancer Chemother Pharmacol. 2014;73(5):1041–5.

    Article  CAS  PubMed  Google Scholar 

  17. Lee NY, Kang YS. The brain-to-blood efflux transport of taurine and changes in the blood-brain barrier transport system by tumor necrosis factor-alpha. Brain Res. 2004;1023(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  18. Hosoya KI, Takashima T, Tetsuka K, Nagura T, Ohtsuki S, Takanaga H, et al. mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J Drug Target. 2000;8(6):357–70.

    Article  CAS  PubMed  Google Scholar 

  19. Kang YS, Ohtsuki S, Takanaga H, Tomi M, Hosoya K, Terasaki T. Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J Neurochem. 2002;83(5):1188–95.

    Article  CAS  PubMed  Google Scholar 

  20. Lee NY, Choi HO, Kang YS. The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res. 2012;37(7):1499–507.

    Article  CAS  PubMed  Google Scholar 

  21. Halestrap AP. The SLC16 gene family – structure, role and regulation in health and disease. Mol Aspects Med. 2013;34:337–49.

    Article  CAS  PubMed  Google Scholar 

  22. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 2004;66(4):899–908.

    Article  CAS  PubMed  Google Scholar 

  23. Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93(5):1087–98.

    Article  CAS  PubMed  Google Scholar 

  24. Kang YS. Taurine transport mechanism through the blood-brain barrier in spontaneously hypertensive rats. Adv Exp Med Biol. 2000;483:321–4.

    Article  CAS  PubMed  Google Scholar 

  25. Berg S, Serabe B, Aleksic A, Bomgaars L, McGuffey L, Dauser R, et al. Pharmacokinetics and cerebrospinal fluid penetration of phenylacetate and phenylbutyrate in the nonhuman primate. Cancer Chemother Pharmacol. 2001;47(5):385–90.

    Article  CAS  PubMed  Google Scholar 

  26. Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, et al. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002;83:57–66.

    Article  CAS  PubMed  Google Scholar 

  27. Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K. New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today. 2003;8:944–54.

    Article  CAS  PubMed  Google Scholar 

  28. Roiko SA, Felmlee MA, Morris ME. Brain uptake of the drug of abuse γ-hydroxybutyric acid in rats. Drug Metab Dispos. 2012;40(1):212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol. 1982;70:89–103.

    Article  CAS  PubMed  Google Scholar 

  30. Morse BL, Felmlee MA, Morris ME. γ-Hydroxybutyrate blood/plasma partitioning: effect of physiologic pH on transport by monocarboxylate transporters. Drug Metab Dispos. 2012;40(1):64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol. 2000;279(4):G775–80.

    CAS  PubMed  Google Scholar 

  32. Boll M, Foltz M, Rubio-Aliaga I, Kottra G, Daniel H. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J Biol Chem. 2002;277(25):22966–73.

    Article  CAS  PubMed  Google Scholar 

  33. Sai Y, Kaneko Y, Ito S, Mitsuoka K, Kato Y, Tamai I, et al. Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells. Drug Metab Dispos. 2006;34(8):1423–31.

    Article  CAS  PubMed  Google Scholar 

  34. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  35. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25(6):1469–83.

    Article  CAS  PubMed  Google Scholar 

  36. Smith JP, Drewes LR. Modulation of monocarboxylic acid transporter-1 kinetic function by the cAMP signaling pathway in rat brain endothelial cells. J Biol Chem. 2006;281:2053–60.

    Article  CAS  PubMed  Google Scholar 

  37. Carl SM, Lindley DJ, Das D, Couraud PO, Weksler BB, Romero I, et al. ABC and SLC transporter expression and proton oligopeptide transporter (POT) mediated permeation across the human blood-brain barrier cell line, hCMEC/D3. Mol Pharm. 2010;7(4):1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takanaga H, Tamai I, Tsuji A. pH-Dependent and carrier-mediated transport of salicylate across Caco-2 cells. J Pharm Pharmacol. 1994;46(7):567–70.

    Article  CAS  PubMed  Google Scholar 

  39. Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 2014;20:1487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guffon N, Kibleur Y, Copalu W, Tissen C, Breitkreutz J. Developing a new formulation of sodium phenylbutyrate. Arch Dis Child. 2012;97(12):1081–5.

    Article  PubMed  Google Scholar 

  41. Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, et al. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of l-lactate and ketone bodies in the brain. J Neurochem. 2006;98(1):279–88.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0030701) and the SRC Research Center for Women’s Diseases of Sookmyung Women’s University (No. 3-1103-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sook Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, NY., Kang, YS. In Vivo and In Vitro Evidence for Brain Uptake of 4-Phenylbutyrate by the Monocarboxylate Transporter 1 (MCT1). Pharm Res 33, 1711–1722 (2016). https://doi.org/10.1007/s11095-016-1912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1912-6

KEY WORDS

Navigation