Pharmaceutical Research

, Volume 33, Issue 7, pp 1564–1575 | Cite as

Skin Absorption of Anions: Part One. Methodology for In Vitro Cutaneous Absorption Measurements

  • Raphaël Paweloszek
  • Stéphanie Briançon
  • Yves Chevalier
  • Nicole Gilon-Delepine
  • Jocelyne Pelletier
  • Marie-Alexandrine Bolzinger
Research Paper



Measurement of skin absorption of ions requires specific experimental protocols regarding the use of pig skin as a model, the viability of excised skin in water medium over 24 h, the presence of endogenous ions, and evaluation of the contributions of facilitated transport through ion channels and ion transporters.


Absorption experiments of halide anions F, Cl, Br and I in excised skin were performed in Franz diffusion cells. Experiments were performed on human and porcine skin under various conditions so as to define and validate experimental protocols.


The distributions of endogenous ions and the absorption kinetics of halide ions were similar in both porcine and human skin models. Fresh skin kept its viability over 24 h in salt-free water, allowing experiments following OECD guidelines. Permeation increased in the order F < Cl < Br < I for all receptor media and skin samples. Absorption was larger in fresh skin due to the transport through chloride channels or exchangers.


Skin absorption experiments of ions in Franz cells rely on working with fresh excised skin (human or porcine) and pure water as receptor fluid. Experiments with chloride blockers or frozen/thawed skin allow discriminating passive diffusion and facilitated transport.


anion halide ion permeation skin absorption 



Ca2+ activated Cl channels


Cystic fibrosis transmembrane conductance regulator


Chloride channel




Donor fluid


4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid


Hank’s balanced salt solution. It contains 1 g.L−1 of glucose in its composition.


Indanyloxyacetic acid


Ion chromatography


Inductively coupled plasma optical emission spectrometry


Lactate deshydrogenase


Sodium-chloride symporter (also known as Na+-Cl co-transporter)


Sodium-iodide symporter


Sodium-potassium-chloride co-transporter


Receptor fluid


Stratum corneum


Serum saline (physiological serum saline solution NaCl 9 g.L−1) containing 1 g.L−1 of glucose


Viable epidermis


Ultrapure water (resistivity >18 MΩ.cm at 25°C) containing 1 g.L−1 of glucose



The support of the Ministère de l’Enseignement Supérieur et de la Recherche (France) is gratefully acknowledged.


  1. 1.
    Hostynek J-J. Factors determining percutaneous metal absorption. Food Chem Toxicol. 2003;41:327–45.CrossRefPubMedGoogle Scholar
  2. 2.
    La Count TD, Kasting GB. Human skin is permselective for the small, monovalent cations sodium and potassium but not for nickel and chromium. J Pharm Sci. 2013;102:2241–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Tymen H, Gerasimo P, Hoffschir D. Contamination and decontamination of rat and human skin with plutonium and uranium, studied with a Franz’s chamber. Int J Radiat Biol. 2000;76:1417–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Bolzinger MA, Bolot C, Galy G, Chabanel A, Pelletier J, Briançon S. Skin contamination by radiopharmaceuticals and decontamination strategies. Int J Pharm. 2010;402:44–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Phipps JB, Pasmanabhan RV, Lattin GA. Iontophoretic delivery of model inorganic and drug ions. J Pharm Sci. 1989;78:365–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Denda M, Hosoi J, Asida Y. Visual imaging of ion distribution in human epidermis. Biochem Biophys Res Commun. 2000;272:134–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Lin P, Gruenstein E. Pathways of Cl transport in human fibroblasts. Am J Physiol. 1988;255:112–22.Google Scholar
  8. 8.
    Mastrocola T, De Luca M, Rugolo M. Characterization of chloride transport pathways in cultured human keratinocytes. Biochim Biophys Acta. 1991;1097:275–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Bear CE. Phosphorylation-activated chloride channels in human skin fibroblasts. FEBS Lett. 1988;237:145–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Plog S, Mundhenk L, Langbein L, Gruber AD. Synthesis of porcine pCLCA2 protein during late differentiation of keratinocytes of epidermis and hair follicle inner root sheath. Cell Tissue Res. 2012;350:445–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82:503–68.CrossRefPubMedGoogle Scholar
  12. 12.
    Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand. 2003;177:119–47.CrossRefPubMedGoogle Scholar
  13. 13.
    Denda M, Inoue K, Inomata S, Denda S. γ-Aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J Investig Dermatol. 2002;119:1041–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Investig Dermatol. 2003;121:362–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Perron B, Rodriguez AM, Leblanc G, Pourcher T. Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. J Endocrinol. 2001;170:185–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen T, Singleton L, Imbert I, Perrin A, Gondran C, McMullen R, et al. Effect of UVB irradiation on intracellular sodium level and chloride channel CFTR expression in normal human keratinocytes and skin biopsies. J Investig Dermatol. 2009;129(supplement 1s):S133,796.Google Scholar
  17. 17.
    von Zglinicki T, Lindberg M, Roomans GM, Forslind B. Water and ion distribution profiles in human skin. Acta Derm Venereol. 1993;73:340–3.Google Scholar
  18. 18.
    Forslind B, Lindberg M, Roomans GM, Pallon J, Werner-Linde Y. Aspects on the physiology of human skin: studies using particle probe analysis. Microsc Res Tech. 1997;38:373–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol Appl Pharmacol. 1982;62:481–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Harrison SM, Barry BW, Dugard PH. Effects of freezing on human skin permeability. J Pharm Pharmacol. 1984;36:261–2.CrossRefPubMedGoogle Scholar
  21. 21.
    Bronaugh RL, Stewart RF, Simon M. Methods for in vitro percutaneous absorption studies VII: use of excised human skin. J Pharm Sci. 1986;75:1094–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Smith CK, Moore CA, Elahi EN, Smart ATS, Hotchkiss SAM. Human skin absorption and metabolism of the contact allergens, cinnamic aldehyde, and cinnamic alcohol. Toxicol Appl Pharmacol. 2000;168:189–99.CrossRefPubMedGoogle Scholar
  23. 23.
    OECD. Guidance document for the conduct of skin absorption studies. OECD series on testing and assessment: number 28. 2004.Google Scholar
  24. 24.
    Messager S, Hann AC, Goddard PA, Dettmar PW, Maillard JY. Assessment of skin viability: is it necessary to use different methodologies? Skin Res Technol. 2003;9:321–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Collier SW, Sheikh NM, Sakr A, Lichtin JL, Stewart RF, Bronaugh RL. Maintenance of skin viability during in vitro percutaneous absorption/metabolism studies. Toxicol Appl Pharmacol. 1989;99:522–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Förster M, Bolzinger MA, Rovère MR, Damour O, Montagnac G, Briançon S. Confocal Raman microspectroscopy for evaluating the stratum corneum removal by 3 standard methods. Skin Pharmacol Physiol. 2011;24:103–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Investig Dermatol. 2004;122:14–9.CrossRefPubMedGoogle Scholar
  28. 28.
    EN ISO 10304-1:2009: water quality. Determination of dissolved anions by liquid chromatography of ions. Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.Google Scholar
  29. 29.
    Simon GA, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations-an overview. Skin Pharmacol Appl Skin Physiol. 2000;13:229–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Verissimo A, Alves LC, Filipe P, Silva JN, Silva R, Ynsa MD, et al. Nuclear microscopy: a tool for imaging elemental distribution and percutaneous absorption in vivo. Microsc Res Tech. 2007;70:302–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Gontier E, Barberet P, Barbotteau Y, Habchi C, Incerti S, Moretto P, et al. Micro-PIXE characterization of different skin models. X-Ray Spectrom. 2005;34:381–8.CrossRefGoogle Scholar
  32. 32.
    Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR. Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest. 1992;89:530–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Denda M, Tsutsumi M, Inoue K, Crumrine D, Feingold KR, Elias PM. Potassium channel openers accelerate epidermal barrier recovery. Br J Dermatol. 2007;157:888–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Denda M, Katagiri C, Hirao T, Maruyama N, Takahashi M. Some magnesium salts and some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch Dermatol Res. 1999;291:560–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Halprin KM, Ohkawara A. Lactate production and lactate dehydrogenase in the human epidermis. J Investig Dermatol. 1966;47:222–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Reuss L, Hirst BH. Water transport controversies – an overview. J Physiol. 2002;54:1–2.CrossRefGoogle Scholar
  37. 37.
    Lyklema J. Fundamentals of interface and colloid science. Vol 1, Chap 5. London: Academic Press. pp. 5.15–5.31.Google Scholar
  38. 38.
    Pitzer KS. Electrolyte theory - improvements since Debye and Hückel. Acc Chem Res. 1977;10:371–7.CrossRefGoogle Scholar
  39. 39.
    Guggenheim EA, Turgeon JC. Specific interactions of ions. Trans Faraday Soc. 1955;51:747–61.CrossRefGoogle Scholar
  40. 40.
    Kasting GB, Bowman LA. Electrical analysis of fresh, excised human skin: a comparison with frozen skin. Pharm Res. 1990;7:1141–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Burnette RR, Ongpipattanakul B. Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci. 1987;76:765–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Wulff H. New light on the “old” chloride channel blocker DIDS. ACS Chem Biol. 2008;3:399–401.CrossRefPubMedGoogle Scholar
  43. 43.
    Elisei R, Vivaldi A, Ciampi R, Faviana P, Basolo F, Santini F, et al. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter complementary deoxyribonucleic acid. J Clin Endocrinol Metab. 2006;91:2389–95.CrossRefPubMedGoogle Scholar
  44. 44.
    Weber-Schurholz S, Erhard Wischmeyer E, Laurien M, Jockusch H, Schurholz T, Landry DW, et al. Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle. J Biol Chem. 1993;268:547–51.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raphaël Paweloszek
    • 1
  • Stéphanie Briançon
    • 1
  • Yves Chevalier
    • 1
  • Nicole Gilon-Delepine
    • 2
  • Jocelyne Pelletier
    • 1
  • Marie-Alexandrine Bolzinger
    • 1
  1. 1.Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie Faculté de Pharmacie de LyonVilleurbanneFrance
  2. 2.Univ Lyon, Université Lyon 1, CNRS, UMR5280, Institut des Sciences Analytiques (ISA)VilleurbanneFrance

Personalised recommendations