Skip to main content
Log in

Synthesis and In Vitro Evaluation of Polyethylene Glycol-Paclitaxel Conjugates for Lung Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary drug delivery is considered an attractive route of drug administration for lung cancer chemotherapy. However, fast clearance mechanisms result in short residence time of small molecule drugs in the lung. Therefore, achieving a sustained presence of chemotherapeutics in the lung is very challenging. In this study, we synthesized two different polyethylene glycol-paclitaxel ester conjugates with molecular weights of 6 and 20 kDa in order to achieve sustained release of paclitaxel in the lung.

Methods

One structure was synthesized with azide linker using “click” chemistry and the other structure was synthesized with a succinic spacer. The physicochemical and biological properties of the conjugates were characterized in vitro.

Results

Conjugation to polyethylene glycol improved the solubility of paclitaxel by up to four orders of magnitude. The conjugates showed good stability in phosphate buffer saline pH 6.9 (half-life ≥72 h) and in bronchoalveolar lavage (half-life of 3 to 9 h) at both molecular weights, but hydrolyzed quickly in mouse serum (half-life of 1 to 3 h). The conjugates showed cytotoxicity to B16-F10 melanoma cells and LL/2 Lewis lung cancer cells but less than free paclitaxel or Taxol, the commercial paclitaxel formulation.

Conclusions

These properties imply that the conjugates have the potential to retain paclitaxel in the lung for a prolonged duration and to sustain its release locally for a better efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAL:

Bronchoalveolar lavage

DIC:

N,N’-Diisopropylcarbodiimide

DMAP:

4-Dimethylaminopyridine

DMEM:

Dulbecco’s modified eagle medium

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DPBS:

Dulbecco’s phosphate-buffered saline

FBS:

Fetal bovine serum

FT-IR:

Fourier transform infrared spectroscopy

HBSS:

Hank’s balanced salt solution

HPLC:

High performance liquid chromatography

MEM-Alpha:

Minimum essential medium eagle alpha

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide

MW:

Molecular weight

NMR:

Nuclear magnetic resonance

PEG:

Polyethylene glycol

PTX:

Paclitaxel

R.T.:

Room temperature

t ½ :

Half-life

TEA:

Triethylamine

TLC:

Thin layer chromatography

TOF-ES-MS:

Time-of-flight electrospray mass spectrometry

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Phorac Soc. 2004;1:338–44.

    Article  CAS  Google Scholar 

  3. Zarogoulidis P, Giraleli C, Karamanos NK. Inhaled chemotherapy in lung cancer: safety concerns of nanocomplexes delivered. Ther Deliv. 2012;3:1021–3.

    Article  CAS  PubMed  Google Scholar 

  4. Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91.

    Article  CAS  PubMed  Google Scholar 

  5. Roa WH, Azarmi S, Al-Hallak MH, Finlay WH, Magliocco AM, Lobenberg R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release. 2011;150:49–55.

    Article  CAS  PubMed  Google Scholar 

  6. Garbuzenko OB, Saad M, Betigeri S, Zhang M, Vetcher AA, Soldatenkov VA, et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res. 2009;26:382–94.

    Article  CAS  PubMed  Google Scholar 

  7. Waiteand CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng. 2012;40:21–41.

    Article  Google Scholar 

  8. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47:3039–51.

    CAS  PubMed  Google Scholar 

  9. Gursahani H, Riggs-Sauthier J, Pfeiffer J, Lechuga-Ballesteros D, Fishburn CS. Absorption of polyethylene glycol (PEG) polymers: the effect of PEG size on permeability. J Pharm Sci. 2009;98:2847–56.

    Article  CAS  PubMed  Google Scholar 

  10. Koussoroplis SJ, Paulissen G, Tyteca D, Goldansaz H, Todoroff J, Barilly C, et al. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. J Control Release. 2014;187:91–100.

    Article  CAS  PubMed  Google Scholar 

  11. Bayard FJ, Thielemans W, Pritchard DI, Paine SW, Young SS, Backman P, et al. Polyethylene glycol-drug ester conjugates for prolonged retention of small inhaled drugs in the lung. J Control Release. 2013;171:234–40.

    Article  CAS  PubMed  Google Scholar 

  12. Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer. 2005;12 Suppl 1:S189–199.

    Article  CAS  PubMed  Google Scholar 

  13. Vicent MJ. Polymer-drug conjugates as modulators of cellular apoptosis. AAPS J. 2007;9:E200–207.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krishnaand R, Mayer LD, Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11:265–83.

    Article  Google Scholar 

  15. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–4.

    Article  CAS  PubMed  Google Scholar 

  16. Danhier F, Danhier P, De Saedeleer CJ, Fruytier AC, Schleich N, Rieux A, et al. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors. Int J Pharm. 2015;479:399–407.

    Article  CAS  PubMed  Google Scholar 

  17. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res. 1996;56:2112–5.

    CAS  PubMed  Google Scholar 

  18. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kiss L, Walter FR, Bocsik A, Veszelka S, Ozsvari B, Puskas LG, et al. Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells. J Pharm Sci. 2013;102:1173–81.

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Li L, Zhao C, Zheng J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010;51:5283–93.

    Article  CAS  Google Scholar 

  21. Brancaand C, Magazu S. Hydration study of PEG/water mixtures by quasi elastic light scattering, acoustic and rheological measurements. J Phys Chem B. 2002;106:10272–6.

    Article  Google Scholar 

  22. Navath RS, Wang B, Kannan S, Romero R, Kannan RM. Stimuli-responsive star poly(ethylene glycol) drug conjugates for improved intracellular delivery of the drug in neuroinflammation. J Control Release. 2010;142:447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li C, Price JE, Milas L, Hunter NR, Ke S, Yu DF, et al. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res. 1999;5:891–7.

    CAS  PubMed  Google Scholar 

  24. Zou Y, Fu H, Ghosh S, Farquhar D, Klostergaard J. Antitumor activity of hydrophilic Paclitaxel copolymer prodrug using locoregional delivery in human orthotopic non-small cell lung cancer xenograft models. Clin Cancer Res. 2004;10:7382–91.

    Article  CAS  PubMed  Google Scholar 

  25. Greenwald RB. PEG drugs: an overview. J Control Release. 2001;74:159–71.

    Article  CAS  PubMed  Google Scholar 

  26. Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev. 2003;55:217–50.

    Article  CAS  PubMed  Google Scholar 

  27. Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: water soluble taxol 2′-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem. 1996;39:424–31.

    Article  CAS  PubMed  Google Scholar 

  28. Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, et al. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem. 2006;17:1464–72.

    Article  CAS  PubMed  Google Scholar 

  29. Arpicco S, Stella B, Schiavon O, Milla P, Zonari D, Cattel L. Preparation and characterization of novel poly(ethylene glycol) paclitaxel derivatives. Int J Pharm. 2013;454:653–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pilkington-Miksa M, Arosio D, Battistini L, Belvisi L, De Matteo M, Vasile F, et al. Design, synthesis, and biological evaluation of novel cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Bioconjug Chem. 2012;23:1610–22.

    Article  CAS  PubMed  Google Scholar 

  31. Greenwald RB, Pendri A, Bolikal D. Highly water soluble taxol derivatives: 7-polyethylene glycol carbamates and carbonates. J Org Chem. 1995;60:331–6.

    Article  CAS  Google Scholar 

  32. Deutsch HM, Glinski JA, Hernandez M, Haugwitz RD, Narayanan VL, Suffness M, et al. Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity. J Med Chem. 1989;32:788–92.

    Article  CAS  PubMed  Google Scholar 

  33. de Groot FM, van Berkom LW, Scheeren HW. Synthesis and biological evaluation of 2′-carbamate-linked and 2′-carbonate-linked prodrugs of paclitaxel: selective activation by the tumor-associated protease plasmin. J Med Chem. 2000;43:3093–102.

    Article  PubMed  Google Scholar 

  34. Lee J, Lee SC, Acharya G, Chang CJ, Park K. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm Res. 2003;20:1022–30.

  35. Ng AW, Bidani A, Heming TA. Innate host defense of the lung: effects of lung-lining fluid pH. Lung. 2004;182:297–317.

    Article  PubMed  Google Scholar 

  36. Rocks N, Bekaert S, Coia I, Paulissen G, Gueders M, Evrard B, et al. Curcumin–cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br J Cancer. 2012;107:1083–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sorrentino R, Morello S, Luciano A, Crother TR, Maiolino P, Bonavita E, et al. Plasmacytoid dendritic cells alter the antitumor activity of CpG-oligodeoxynucleotides in a mouse model of lung carcinoma. J Immunol. 2010;185:4641–50.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshiura K, Nishishita T, Nakaoka T, Yamashita N, Yamashita N. Inhibition of B16 melanoma growth and metastasis in C57BL mice by vaccination with a syngeneic endothelial cell line. J Exp Clin Cancer Res. 2009;28:13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li W, Zhang P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38:421–44.

    Article  CAS  Google Scholar 

  40. Hovorka O, St’astny M, Etrych T, Subr V, Strohalm J, Ulbrich K, et al. Differences in the intracellular fate of free and polymer-bound doxorubicin. J Control Release. 2002;80:101–17.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was a thesis project funded by the European Commission, Education, Audiovisual and Culture Executive Agency (EACEA), Erasmus Mundus programme, NanoFar doctorate. This work was also supported by the Fonds de la Recherche Scientifique Médicale, Belgium (Grant 3.4503.12). Rita Vanbever is Maître de Recherches of the Fonds National de la Recherche Scientifique (Belgium). The author would like to thank Dr. Cecil Le Duff, Department of chemistry, Université catholique de Louvain, for helping with detection and analysis of NMR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Vanbever.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Magnusson, J., Préat, V. et al. Synthesis and In Vitro Evaluation of Polyethylene Glycol-Paclitaxel Conjugates for Lung Cancer Therapy. Pharm Res 33, 1671–1681 (2016). https://doi.org/10.1007/s11095-016-1908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1908-2

KEY WORDS

Navigation