Pharmaceutical Research

, Volume 33, Issue 7, pp 1576–1586 | Cite as

Skin Absorption of Anions: Part Two. Skin Absorption of Halide Ions

  • Raphaël Paweloszek
  • Stéphanie Briançon
  • Yves Chevalier
  • Nicole Gilon-Delepine
  • Jocelyne Pelletier
  • Marie-Alexandrine Bolzinger
Research Paper



The purpose of the study was to sort skin penetration of anions with respect to their properties and to assess their mechanisms of penetration.


Aqueous solutions of halides at two concentrations were prepared and quantitative penetration studies were carried out for 24 h using Franz diffusion cells. The iodide permeation was also measured after blocking of anion channels and transporters to investigate the role of this specific transport.


Absorption of halide ions into skin revealed large differences of transport between these anions according to the Hofmeister series. Increasing steady-state fluxes and lag times in the order F < Cl < Br < I were observed in permeation experiments. The steady-state fluxes were proportional to the concentration for each halide ion. Longer lag times for iodide or bromide ions were explained by the ability of such sticky chaotropic anions to interact with apolar lipids especially in the stratum corneum. Inhibiting ion exchangers and channels decreased the flux of iodide ions by 75%, showing the high contribution of the facilitated transport over the passive pathway.


Ions transport had contributions coming from passive diffusion through the skin layers and transport mediated by ion channels and binding to ion transporters.


chloride ion channels halide ions Hofmeister series skin absorption 



Anion exchanger


Ca2+-activated Cl channels


Cystic Fibrosis Transmembrane Conductance Regulator


Chloride Channel




Diffusion coefficient


Donor fluid


4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid


γ-aminobutyric acid


Indanyloxyacetic acid


Ion chromatography


Inductively Coupled Plasma Optical Emission Spectrometry


Steady-state flux


Partition coefficient


Permeability coefficient


Sodium-chloride symporter (also known as Na+-Cl cotransporter)


Sodium-iodide symporter


Sodium-potassium-chloride cotransporter


Receptor fluid


Stratum corneum


Viable epidermis


Volume regulated anion channels



The support of the Ministère de l’Enseignement Supérieur et de la Recherche (France) is gratefully acknowledged.


  1. 1.
    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kalia YN, Naik A, Garrison J, Guy RH. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56:619–58.CrossRefPubMedGoogle Scholar
  3. 3.
    Denet AR, Vanvever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56:659–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Phipps JB, Pasmanabhan RV, Lattin GA. Iontophoretic delivery of model inorganic and drug ions. J Pharm Sci. 1989;78:365–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Burnette RR, Ongpipattanakul B. Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci. 1987;76:765–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Skog E, Wahlberg JE. A comparative investigation of the percutaneous absorption of metal compounds in the guinea pig by means of the radioactive isotopes: 51Cr, 58Co, 65Zn, 110mAg, ll5mCd, 203Hg. J Investig Dermatol. 1964;43:187–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Tregear RT. The permeability of mammalian skin to ions. J Investig Dermatol. 1966;46:16–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Larese F, Gianpietro A, Venier M, Maina G, Renzi N. In vitro percutaneous absorption of metal compounds. Toxicol Lett. 2007;170:49–56.CrossRefPubMedGoogle Scholar
  9. 9.
    La Count TD, Kasting GB. Human skin is permselective for the small, monovalent cations sodium and potassium but not for nickel and chromium. J Pharm Sci. 2013;102:2241–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Bolzinger MA, Bolot C, Galy G, Chabanel A, Pelletier J, Briançon S. Skin contamination by radiopharmaceuticals and decontamination strategies. Int J Pharm. 2010;402:44–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Kunz W, Lo Nostro P, Ninham BW. The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci. 2004;9:1–18.CrossRefGoogle Scholar
  12. 12.
    Collins KD, Washabaugh MW. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985;18:323–422.CrossRefPubMedGoogle Scholar
  13. 13.
    Washabaugh MW, Collins KD. The systematic characterization by aqueous column chromatography of solutes which affect protein stability. J Biol Chem. 1986;261:12477–85.PubMedGoogle Scholar
  14. 14.
    Cacace MG, Landau EM, Ramsden JJ. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997;30:241–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Collins KD. Sticky ions in biological systems. Proc Natl Acad Sci U S A. 1995;92:5553–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Collins KD. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods. 2004;34:300–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Collins KD, Neilson GW, Enderby JE. Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem. 2007;128:95–104.CrossRefPubMedGoogle Scholar
  18. 18.
    Bartucci R, Sportelli L. Spin label EPR study of the effects of monovalent cations, anions, and chaotropics on DPPC multilayers. Biochim Biophys Acta. 1994;1195:229–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Bartucci R, Belsito S, Sportelli L. Neutral lipid bilayers interacting with chaotropic anions. Chem Phys Lipids. 1996;79:171–80.CrossRefGoogle Scholar
  20. 20.
    Ko Y, Kim SS, Han SK. Transdermal permeation-enhancing activities of some inorganic anions. Arch Pharm Res. 1995;18:231–6.CrossRefGoogle Scholar
  21. 21.
    Perron B, Rodriguez AM, Leblanc G, Pourcher T. Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. J Endocrinol. 2001;170:185–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand. 2003;177:119–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Suh KS, Mutoh M, Mutoh T, Li L, Ryscavage A, Crutchley JM, et al. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J Cell Sci. 2007;120:2631–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Denda M, Inoue K, Inomata S, Denda S. γ-aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal, hyperplasia induced by barrier disruption. J Investig Dermatol. 2002;119:1041–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Investig Dermatol. 2003;121:362–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Tabcharani JA, Linsdell PL, Hanrahan JW. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol. 1997;110:341–54.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82:503–68.CrossRefPubMedGoogle Scholar
  28. 28.
    Bormann J, Hamill OP, Sakmann B. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987;385:243–86.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Elisei R, Vivaldi A, Ciampi R, Faviana P, Basolo F, Santini F, et al. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter complementary deoxyribonucleic acid. J Clin Endocrinol Metab. 2006;91:2389–95.CrossRefPubMedGoogle Scholar
  30. 30.
    Gérard C, Rigot V, Penel C. Chloride channel blockers inhibit the Na+/I symporter in thyroid follicles in culture. Biochem Biophys Res Commun. 1994;204:1265–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Landry DW, Reitman M, Cragoe EJ, Al-Awqati Q. Epithelial chloride channel—development of inhibitory ligands. J Gen Physiol. 1987;90:779–98.CrossRefPubMedGoogle Scholar
  32. 32.
    Large WA, Wang Q. Characteristics and physiological role of the Ca2+-activated Cl conductance in smooth muscle. Am J Physiol. 1996;271:435–54.Google Scholar
  33. 33.
    Lin P, Gruenstein E. Pathways of Cl transport in human fibroblasts. Am J Physiol. 1988;255:112–22.Google Scholar
  34. 34.
    Paweloszek R, Briançon S, Chevalier Y, Gilon-Delepine N, Pelletier J, Bolzinger MA. Skin absorption of anions: part one. Methodology for in vitro cutaneous absorption measurements. doi: 10.1007/s11095-016-1909-1.
  35. 35.
    OECD. Guidance document for the conduct of skin absorption studies. OECD Series on Testing and Assessment: Number 28; 2004.Google Scholar
  36. 36.
    Förster M, Bolzinger MA, Rovère MR, Damour O, Montagnac G, Briançon S. Confocal Raman microspectroscopy for evaluating the stratum corneum removal by 3 standard methods. Skin Pharmacol Physiol. 2011;24:103–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Mastrocola T, De Luca M, Rugolo M. Characterization of chloride transport pathways in cultured human keratinocytes. Biochim Biophys Acta. 1991;1097:275–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Veríssimo A, Alves LC, Filipe P, Silva JN, Silva R, Ynsa MD, et al. Nuclear microscopy: a tool for imaging elemental distribution and percutaneous absorption in vivo. Microsc Res Tech. 2007;70:302–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Blaydon DC, Kelsell DP. Defective channels lead to an impaired skin barrier. J Cell Sci. 2014;127:4343–50.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mese G, Richard G, White TW. Gap junctions: basic structure and function. J Investig Dermatol. 2007;127:2516–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Kurasawa M, Maeda T, Oba A, Yamamoto T, Sasaki H. Tight junction regulates epidermal calcium ion gradient and differentiation. Biochem Biophys Res Commun. 2011;406:506–11.CrossRefPubMedGoogle Scholar
  42. 42.
    Yool AJ, Campbell EM. Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Asp Med. 2012;33:553–61.CrossRefGoogle Scholar
  43. 43.
    Rambow J, Wu B, Rönfeldt D, Beitz E. Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen-host interactions. Front Pharmacol. 2014;5:199.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hatanaka T, Manabe E, Sugibayashi K, Morimoto Y. An application of the hydrodynamic pore theory to percutaneous absorption of drugs. Pharm Res. 1994;11:654–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release. 2003;86:69–92.CrossRefPubMedGoogle Scholar
  46. 46.
    Mitragotri S, Anissimov YG, Bunge AL, Frasch HF, Guy RH, Hadgraft J, et al. Mathematical models of skin permeability: an overview. Int J Pharm. 2011;418:115–29.CrossRefPubMedGoogle Scholar
  47. 47.
    Cunningham BA, Lis LJ. Thiocyanate and bromide ions influence the bilayer structural parameters of phosphatidylcholine bilayers. Biochim Biophys Acta. 1986;861:237–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Cunningham BA, Tamura-Lis W, Lis LJ, Collins JM. Thermodynamic properties of acyl chain and mesophase transitions for phospholipids in KSCN. Biochim Biophys Acta. 1989;984:109–12.CrossRefGoogle Scholar
  49. 49.
    Linsdell P, Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, et al. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol. 1997;10:355–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raphaël Paweloszek
    • 1
  • Stéphanie Briançon
    • 1
  • Yves Chevalier
    • 1
  • Nicole Gilon-Delepine
    • 2
  • Jocelyne Pelletier
    • 1
  • Marie-Alexandrine Bolzinger
    • 1
  1. 1.Univ Lyon, Université Lyon 1, CNRS, UMR5007, LAGEP - Laboratoire de Dermopharmacie et Cosmétologie, Faculté de Pharmacie de LyonVilleurbanneFrance
  2. 2.Univ Lyon, Université Lyon 1, CNRS, UMR5280, Institut des Sciences Analytiques (ISA)VilleurbanneFrance

Personalised recommendations