Advertisement

Pharmaceutical Research

, Volume 33, Issue 10, pp 2314–2336 | Cite as

Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors

  • S. N. Aisyiyah Jenie
  • Sally E. Plush
  • Nicolas H. VoelckerEmail author
Expert Review

Abstract

Luminescence–based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

KEY WORDS

biosensors europium luminescence enhancement microcavity porous silicon 

Abbreviations

Ȧ

Angstroms

1D

One-dimensional space

Ag

Silver

AgNP

Silver nanoparticles

ALn, BLn

Constants for a given lanthanide in the determination of the inner sphere hydration number

APTES

3-aminopropyltriethoxysilane

Au

Gold

AuNP

Gold nanoparticles

Br2

Bromine

C60

Type of photosensitiser

Cd/Se

Cadmium/Selenium

cDNA

Complementary strand of deoxyribonucleic acid

CdSe/ZnS

Cadmium selenide/zinc sulfide

CEST

Chemical exchange saturation transfer

CH

Hydrocarbon group

CL

Chemiluminescence

Cl2

Chlorine

Co2+

Cobalt ion

CRET

Chemiluminescence energy transfer

Cy3-DNA, Cy5-DNA

Cyanine labeled deoxyribonucleic acid

cyclen

1,4,7,10-tetraazadodecane

d

Porous silicon film thickness

D07FJ, J =0-4

Transition of the electronic states of the europium ion

D2O

Deuterated water

DBR

Distributed Bragg reflectors

DELFIA

Dissociation-enhanced lanthanide fluorescent immunoassay

DNA

Deoxyribonucleic acid

dns-l-phe

Dansyl-l-phenylalanine

DO3A

1,4,7,10-tetraaza-cyclotetradecane-1,4,7-triacetic acid

DTPA

Diethylenetriaminepentaacetic acid

Dy(III)

Dysprosium ion

E

Energy state

EDTA

Ethylenediaminetetraacetic acid

ELISA

Enzyme-linked immunosorbent assay

ENSAM

Europium nanoparticles for signal enhancement of antibody microarrays

Eu(III)

Europium ion

Eu[tc] complex

Europium tetracycline complex

Eu-PyDC complex

Europium pyridine-3-5-dicarboxylic acid complex

F

Fluoride

FITC

Fluorescein isothiocyanate

fM

Femtomolar

fmol/l

Femtomoles per liters

F-P filters

Fabry-Pérot filters

FRET

Fluorescence resonance energy transfer

FWHM

Full width at half maximum

GOX

Glucose oxidase

H layer

High refractive index layer

h+

Valence band holes

H2

Hydrogen

H2O

Water

H2O2

Hydrogen peroxide

H2SiF6

Hexafluorosilicic acid

HF

Hydrofluoric acid

HRP

Horseradish peroxidase

HSA

Human serum albumin

HTRF

Homogeneous time resolved fluorescence

I2

Iodine

IgG

Immunoglobulin G

KHSO5

Potassium peroxymonosulfate

knr

Non-radiative decay rate

L layer

Low refractive index layer

L mol−1 cm−1

Molar absorptivity

LDH

L-lactate dehydrogenase

Ln(III)

Lanthanide ion

LOCI

Luminescent oxygen channeling immunoassay

LOD

Limit of detection

m

Spectral order

M

Molar

MMP

Matrix metalloproteinase

MRI

Magnetic resonance imaging

MTTA-Eu(III)

Eu(III)-4′-(10-methyl-9-anthryl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo) tetrakis(acetate)

n

Refractive index

NADH

Reduced form of nicotinamide-adenine dinucleotide

NADPH

Reduced form of nicotinamide-adenine dinucleotide phosphate

NC

Nanocrystals

ng/l

Nanograms per liters

ng/ml

Nanograms per milliliters

NH

Amine group

NIR

Near infra-red

nm

Nanometers

nM

Nanomolar

O2

Singlet oxygen

OH

Hydroxyl group

OH˙

Hydroxyl radical

PARACEST

Paramagnetic CEST agents

pfu/ml

Plaque-forming units per milliliters

pg/mm2

picograms per millimeters squared

pH

Acidity numeric scale

phen

1,10-phenanthroline

pM

Picomolar

PMT

Photomultiplier tube

ppm

Parts per million

PSA

Prostate specific antigen

PSCM

Porous silicon coupled microcavity

pSi

Porous silicon

pSiMC

Porous silicon microcavity

QD

Quantum dots

Q-factor

Quality factor of the porous silicon microcavity

Qm

Quantum yield of a molecule in close proximity to a metal

RDE

Radiative decay engineering

Rhodamine B

9-(2-carboxyphenyl)-6-diethylamino-3-xanthenylidene]-diethylammonium chloride

ROS

Reactive oxygen species

S0

Ground state of electrons

S1

Excited singlet state of electrons

SEF

Surface enhanced fluorescence

SERS

Surface enhaced Raman scattering

Si

Silicon

Si(OH)4

Silicic acid

SIF

Silver island films

SiO2

Silicon oxide

Sm(III)

Samarium ion

SPR

Surface plasmon resonance

ssDNA

Single strand of deoxyribonucleic acid

SWNT

Single walled carbon nanotubes

T1

Excited triplet state of electrons

Tb(III)

Terbium ion

TC

Thermal carbonisation

TETA

1,4,8,11-tetraazacyclo-tetradecane-1,4,8,11-tetraacetic acid

THC

Thermal hydrocarbonisation

TMPyP

5,10,15,20-tetrakis(1-methyl-4-pyridinio)-porphyrintetra(−toluenesulfonate)

TOPO

Tri-n-octylphosphine oxide

TTA

Conjugated base of 2-theonyltrifluoroacetone

TTF

Tetrathiafulvalene

UV

Ultraviolet

Zn(II)

Zinc ion

β-NAD+

Nicotinamide-adenine dinucleotide

λ

Wavelength

μFEIA

Microfluidic enzyme immunoassay

μm

Micrometers or microns

μM

Micromolar

μs

Microseconds

τ

Luminescence lifetime

τm

Luminescence lifetime of a molecule in close proximity to a metal

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to acknowledge the Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology (project number CE140100036). SNAJ would like to thank the Australian Government for the Australia Award Scholarship and acknowledge funding from the Wound Management Innovation CRC (Australia).

Supplementary material

11095_2016_1889_MOESM1_ESM.pdf (106 kb)
ESM 1 (PDF 106 kb)
11095_2016_1889_MOESM2_ESM.pdf (121 kb)
ESM 2 (PDF 120 kb)

References

  1. 1.
    Thevenot DR, Tóth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999;71(12):2333.CrossRefGoogle Scholar
  2. 2.
    Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification1. Biosens Bioelectron. 2001;16(1–2):121–31.PubMedCrossRefGoogle Scholar
  3. 3.
    McNaught AD, Wilkinson A. IUPAC. Compendium of chemical terminology, (the “Gold Book”). 2nd ed. Oxford: Blackwell Scientific Publications; 1997.Google Scholar
  4. 4.
    Ponmozhi J, Frias C, Marques T, Frazão O. Smart sensors/actuators for biomedical applications: review. Measurement. 2012;45(7):1675–88.CrossRefGoogle Scholar
  5. 5.
    Fuji-Keizai. Biosensor market, R&D Applications & Commercial Implication: W.S. & Worldwide. Fuji-Keizai USA, Incorporated; 2004.Google Scholar
  6. 6.
    Luong JHT, Male KB, Glennon JD. Biosensor technology: technology push versus market pull. Biotechnol Adv. 2008;26(5):492–500.PubMedCrossRefGoogle Scholar
  7. 7.
    Jane A, Dronov R, Hodges A, Voelcker NH. Porous silicon biosensors on the advance. Trends Biotechnol. 2009;27(4):230–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Perumal V, Hashim U. Advances in biosensors: principle, architecture and applications. J Appl Biomed. 2014;12(1):1–15.CrossRefGoogle Scholar
  9. 9.
    Krishnamoorthy S. Nanostructured sensors for biomedical applications—a current perspective. Curr Opin Biotechnol. 2015;34:118–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Ray S, Reddy PJ, Choudhary S, Raghu D, Srivastava S. Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics. 2011;74(12):2660–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics. 2011;11(11):2139–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Moran JH, Schnellmann RG. A rapid β-NADH-linked fluorescence assay for lactate dehydrogenase in cellular death. J Pharmacol Toxicol Methods. 1996;36(1):41–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Lilja H, Ulmert D, Björk T, Becker C, Serio AM, Nilsson J-Å, et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate Kallikreins measured at age 44 to 50 years. J Clin Oncol. 2007;25(4):431–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Järås K, Tajudin AA, Ressine A, Soukka T, Marko-Varga G, Bjartell A, et al. ENSAM: europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J Proteome Res. 2008;7(3):1308–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Price JH, Goodacre A, Hahn K, Hodgson L, Hunter EA, Krajewski S, et al. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools. J Cell Biochem. 2002;87(S39):194–210.PubMedCrossRefGoogle Scholar
  16. 16.
    Woods M, Kovacs Z, Sherry AD. Targeted complexes of lanthanide(III) ions as therapeutic and diagnostic pharmaceuticals. J Supramol Chem. 2002;2(1–3):1–15.CrossRefGoogle Scholar
  17. 17.
    Welsh DK, Kay SA. Bioluminescence imaging in living organisms. Curr Opin Biotechnol. 2005;16(1):73–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Licha K, Olbrich C. Optical imaging in drug discovery and diagnostic applications. Adv Drug Delivery Rev. 2005;57(8):1087–108.CrossRefGoogle Scholar
  19. 19.
    Bosch M, Sánchez A, Rojas F, Ojeda C. Recent development in optical fiber biosensors. Sensors. 2007;7(6):797–859.PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Monk D, Walt D. Optical fiber-based biosensors. Anal Bioanal Chem. 2004;379(7–8):931–45.PubMedGoogle Scholar
  21. 21.
    Moore EG, Samuel APS, Raymond KN. From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res. 2009;42(4):542–52.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mirasoli M, Michelini E. Analytical bioluminescence and chemiluminescence. Anal Bioanal Chem. 2014;406(23):5529–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Emmanuel F, Samuel G. Surface enhanced fluorescence. J Phys D: Appl Phys. 2008;41(1):013001.CrossRefGoogle Scholar
  24. 24.
    Binnemans K. Lanthanide-based luminescent hybrid materials. Chem Rev. 2009;109(9):4283–374.PubMedCrossRefGoogle Scholar
  25. 25.
    Ince R, Narayanaswamy R. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal Chim Acta. 2006;569(1–2):1–20.CrossRefGoogle Scholar
  26. 26.
    Lakowicz JR. Fluorophores—principles of fluorescence spectroscopy. US: Springer; 2006. p. 63–95.CrossRefGoogle Scholar
  27. 27.
    Lakowicz JR, Geddes CD, Gryczynski I, Malicka JB, Gryczynski Z, Aslan K, et al. Advances in surface-enhanced fluorescence. J Fluoresc. 2004;14:10–28.CrossRefGoogle Scholar
  28. 28.
    Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003;305(3):761–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Fabbrizzi L, Licchelli M, Perotti A, Poggi A, Rabaioli G, Sacchi D, et al. Fluorescent molecular sensing of amino acids bearing an aromatic residue. J Chem Soc Perkin Trans. 2001;2(11):2108–13.CrossRefGoogle Scholar
  30. 30.
    Lakowicz JR. Principles of fluorescence spectroscopy. Springer Science & Business Media; 2013.Google Scholar
  31. 31.
    Palestino G, Agarwal V, Aulombard R, Pérez EA, Gergely C. Biosensing and protein fluorescence enhancement by functionalized porous silicon devices. Langmuir. 2008;24(23):13765–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Hou J-M, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009;175(2):808–16.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kastritis E, Kyrtsonis M-C, Hadjiharissi E, Symeonidis A, Michalis E, Repoussis P, et al. Validation of the International Prognostic Scoring System (IPSS) for Waldenstrom’s macroglobulinemia (WM) and the importance of serum lactate dehydrogenase (LDH). Leuk Res. 2010;34(10):1340–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Ho J, de Moura MB, Lin Y, Vincent G, Thome S, Duncan LM, et al. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer. 2012;11(1):76–88.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    James TJ, Hughes MA, Cherry GW, Taylor RP. Simple biochemical markers to assess chronic wounds. Wound Repair and Regeneration. 2000;8(4):264–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao YH, Zhou M, Liu H, Ding Y, Khong HT, Yu D, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28(42):3689–701.PubMedCrossRefGoogle Scholar
  37. 37.
    Drent M, Cobben N, Henderson R, Wouters E, van Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur Respir J. 1996;9(8):1736–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang N, Huang D, Zhang J, Cheng J, Yu T, Zhang H, et al. Electrochemical studies on the effects of nanometer-sized tridecameric aluminum polycation on lactate dehydrogenase activity at the molecular level. J Phys Chem C. 2008;112(46):18034–8.CrossRefGoogle Scholar
  39. 39.
    Anedda A, Carbonaro CM, Clemente F, Corpino R, Grandi S, Magistris A, et al. Rhodamine 6G–SiO2 hybrids: a photoluminescence study. J Non-Cryst Solids. 2005;351(21–23):1850–4.CrossRefGoogle Scholar
  40. 40.
    Cho E-B, Volkov DO, Sokolov I. Ultrabright fluorescent silica mesoporous silica nanoparticles: control of particle size and dye loading. Adv Funct Mater. 2011;21(16):3129–35.CrossRefGoogle Scholar
  41. 41.
    Chan J, Dodani SC, Chang CJ. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem. 2012;4(12):973–84.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011;40(9):4783–804.PubMedCrossRefGoogle Scholar
  43. 43.
    Dienstknecht T, Ehehalt K, Jenei-Lanzl Z, Zellner J, Müller M, Berner A, et al. Resazurin dye as a reliable tool for determination of cell number and viability in mesenchymal stem cell culture. Bull Exp Biol Med. 2010;150(1):157–9.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Candeias LP, MacFarlane DPS, McWhinnie SLW, Maidwell NL, Roeschlaub CA, Sammes PG, et al. The catalysed NADH reduction of resazurin to resorufin. J Chem Soc Perkin Trans. 1998;2(11):2333–4.CrossRefGoogle Scholar
  46. 46.
    Matsumoto K, Yuan J. Lanthanide Chelates as fluorescence labels for diagnostics and biotechnology. In: Sigel H, editor. Metal ions in biological systems: the lanthanides and their interrelations with biosystems. 40. CRC Press; 2003.Google Scholar
  47. 47.
    Huhtinen P, Kivelä M, Kuronen O, Hagren V, Takalo H, Tenhu H, et al. Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels. Anal Chem. 2005;77(8):2643–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Handl HL, Gillies RJ. Lanthanide-based luminescent assays for ligand-receptor interactions. Life Sci. 2005;77(4):361–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Hemmilä I. Luminescent lanthanide chelates—a way to more sensitive diagnostic methods. J Alloys Compd. 1995;225(1–2):480–5.CrossRefGoogle Scholar
  50. 50.
    Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B. HTRF: a technology tailored for drug discovery –a review of theoretical aspects and recent applications. Curr Chem Genomics. 2009;3:22–32.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Seidel M, Niessner R. Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem. 2014;406(23):5589–612.PubMedCrossRefGoogle Scholar
  52. 52.
    Li N, Liu D, Cui H. Metal-nanoparticle-involved chemiluminescence and its applications in bioassays. Anal Bioanal Chem. 2014;406(23):5561–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin J-M, Yamada M. Chemiluminescent reaction of fluorescent organic compounds with KHSO5 using cobalt(II) as catalyst and its first application to molecular imprinting. Anal Chem. 2000;72(6):1148–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Lu C, Song G, Lin J-M. Reactive oxygen species and their chemiluminescence-detection methods. TrAC Trends Anal Chem. 2006;25(10):985–95.CrossRefGoogle Scholar
  55. 55.
    Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. Singlet molecular oxygen generated from lipid hydroperoxides by the russell mechanism: studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am Chem Soc. 2003;125(20):6172–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Huang X, Liang Y, Ruan L, Ren J. Chemiluminescent detection of cell apoptosis enzyme by gold nanoparticle-based resonance energy transfer assay. Anal Bioanal Chem. 2014;406(23):5677–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Spasojević I, Liochev SI, Fridovich I. Lucigenin: redox potential in aqueous media and redox cycling with O−2 production1. Arch Biochem Biophys. 2000;373(2):447–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Nardello V, Aubry J-M. Synthesis and properties of a new cationic water-soluble trap of singlet molecular oxygen. Tetrahedron Lett. 1997;38(42):7361–4.CrossRefGoogle Scholar
  59. 59.
    Steinbeck MJ, Khan AU, Karnovsky MJ. Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem. 1992;267(19):13425–33.PubMedGoogle Scholar
  60. 60.
    Aubry J-M, Pierlot C, Rigaudy J, Schmidt R. Reversible binding of oxygen to aromatic compounds. Acc Chem Res. 2003;36(9):668–75.PubMedCrossRefGoogle Scholar
  61. 61.
    Li X, Zhang G, Ma H, Zhang D, Li J, Zhu D. 4,5-Dimethylthio-4′-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen. J Am Chem Soc. 2004;126(37):11543–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Baumes JM, Gassensmith JJ, Giblin J, Lee J-J, White AG, Culligan WJ, et al. Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging. Nat Chem. 2010;2(12):1025–30.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yakovleva J, Davidsson R, Lobanova A, Bengtsson M, Eremin S, Laurell T, et al. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem. 2002;74(13):2994–3004.PubMedCrossRefGoogle Scholar
  64. 64.
    Ge L, Yu J, Ge S, Yan M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem. 2014;406(23):5613–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Parker D, Williams JAG. Getting excited about lanthanide complexation chemistry. J Chem Soc Dalton Trans. 1996;18:3613–28.CrossRefGoogle Scholar
  66. 66.
    Förster T. Excitation transfer and internal conversion. Chem Phys Lett. 1971;12(2):422–4.CrossRefGoogle Scholar
  67. 67.
    Dexter DL. A theory of sensitized luminescence in solids. J Chem Phys. 1953;21(5):836–50.CrossRefGoogle Scholar
  68. 68.
    Lis S, Elbanowski M, Mąkowska B, Hnatejko Z. Energy transfer in solution of lanthanide complexes. J Photochem Photobiol A. 2002;150(1–3):233–47.CrossRefGoogle Scholar
  69. 69.
    Milanova M, Zaharieva J, Manolov I, Getzova M, Todorovsky D. Lanthanide complexes with β-diketones and coumarin derivates: synthesis, thermal behaviour, optical and pharmacological properties and immobilisation. J Rare Earths. 2010;28(Supplement 1):66–74.CrossRefGoogle Scholar
  70. 70.
    Selvin PR, Jancarik J, Li M, Hung L-W. Crystal structure and spectroscopic characterization of a luminescent europium chelate. Inorg Chem. 1996;35(3):700–5.CrossRefGoogle Scholar
  71. 71.
    Ge P, Selvin PR. Carbostyril derivatives as antenna molecules for luminescent lanthanide chelates. Bioconjug Chem. 2004;15(5):1088–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Du Z, Borlace GN, Brooks RD, Butler RN, Brooks DA, Plush SE. Synthesis and characterisation of folic acid based lanthanide ion probes. Inorg Chim Acta. 2014;410:11–9.CrossRefGoogle Scholar
  73. 73.
    Plush SE, Lincoln SF, Wainwright KP. Fluorescent ligands derived from 2-(9-anthrylmethylamino)ethyl-appended cyclen for use in metal ion activated molecular receptors. Inorg Chim Acta. 2009;362(9):3097–103.CrossRefGoogle Scholar
  74. 74.
    Plush SE, Clear NA, Leonard JP, Fanning A-M, Gunnlaugsson T. The effect on the lanthanide luminescence of structurally simple Eu(iii) cyclen complexes upon deprotonation of metal bound water molecules and amide based pendant arms. Dalton Trans. 2010;39(15):3644–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Parker D, Senanayake K, Gareth Williams JA. Luminescent chemosensors for pH, halide and hydroxide ions based on kinetically stable, macrocyclic europium-phenanthridinium conjugates. Chem Commun. 1997;18:1777–8.CrossRefGoogle Scholar
  76. 76.
    Bradbury AJ, Lincoln SF, Wainwright KP. Fluorescent signaling provides deeper insight into aromatic anion uptake by metal-ion activated molecular receptors. New J Chem. 2008;32(9):1500–8.CrossRefGoogle Scholar
  77. 77.
    Antoni P, Malkoch M, Vamvounis G, Nystrom D, Nystrom A, Lindgren M, et al. Europium confined cyclen dendrimers with photophysically active triazoles. J Mater Chem. 2008;18(22):2545–54.CrossRefGoogle Scholar
  78. 78.
    Plush SE, Gunnlaugsson T. Luminescent sensing of dicarboxylates in water by a bismacrocyclic dinuclear Eu(III) conjugate. Org Lett. 2007;9(10):1919–22.PubMedCrossRefGoogle Scholar
  79. 79.
    McCoy CP, Stomeo F, Plush SE, Gunnlaugsson T. Soft matter pH sensing: from luminescent lanthanide ph switches in solution to sensing in hydrogels. Chem Mater. 2006;18(18):4336–43.CrossRefGoogle Scholar
  80. 80.
    Horrocks WD, Sudnick DR. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J Am Chem Soc. 1979;101(2):334–40.CrossRefGoogle Scholar
  81. 81.
    Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, et al. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perkin Trans. 1999;2(3):493–504.CrossRefGoogle Scholar
  82. 82.
    Supkowski RM, Horrocks Jr WD. On the determination of the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorg Chim Acta. 2002;340:44–8.CrossRefGoogle Scholar
  83. 83.
    Pandya S, Yu J, Parker D. Engineering emissive europium and terbium complexes for molecular imaging and sensing. Dalton Trans. 2006;23:2757–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Woods M, Woessner DE, Sherry AD. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev. 2006;35(6):500–11.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wu Y, Zhou Y, Ouari O, Woods M, Zhao P, Soesbe TC, et al. Polymeric PARACEST agents for enhancing MRI contrast sensitivity. J Am Chem Soc. 2008;130(42):13854–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Song B, Wu Y, Yu M, Zhao P, Zhou C, Kiefer GE, et al. A europium(iii)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Trans. 2013;42(22):8066–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities. J Magn Reson. 2013;229:155–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Song B, Wang G, Tan M, Yuan J. Synthesis and time-resolved fluorimetric application of a europium chelate-based phosphorescence probe specific for singlet oxygen. New J Chem. 2005;29(11):1431–8.CrossRefGoogle Scholar
  89. 89.
    Song B, Wang G, Yuan J. A new europium chelate-based phosphorescence probe specific for singlet oxygen. Chem Commun. 2005;28:3553–5.CrossRefGoogle Scholar
  90. 90.
    Song B, Wang G, Tan M, Yuan J. A europium(III) complex as an efficient singlet oxygen luminescence probe. J Am Chem Soc. 2006;128(41):13442–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Dai Z, Tian L, Xiao Y, Ye Z, Zhang R, Yuan J. A cell-membrane-permeable europium complex as an efficient luminescent probe for singlet oxygen. J Mater Chem B. 2013;1(7):924–7.CrossRefGoogle Scholar
  92. 92.
    Wolfbeis OS, Dürkop A, Wu M, Lin Z. A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew Chem Int Ed. 2002;41(23):4495–8.CrossRefGoogle Scholar
  93. 93.
    Wu M, Lin Z, Dürkop A, Wolfbeis O. Time-resolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide. Anal Bioanal Chem. 2004;380(4):619–26.PubMedCrossRefGoogle Scholar
  94. 94.
    dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T. Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev. 2008;252(23–24):2512–27.CrossRefGoogle Scholar
  95. 95.
    Parker D. Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord Chem Rev. 2000;205(1):109–30.CrossRefGoogle Scholar
  96. 96.
    Parker D, Yu J. A pH-insensitive, ratiometric chemosensor for citrate using europium luminescence. Chem Commun. 2005;25:3141–3.CrossRefGoogle Scholar
  97. 97.
    Harma H, Soukka T, Lovgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem. 2001;47(3):561–8.PubMedGoogle Scholar
  98. 98.
    Hemmilä I, Dakubu S, Mukkala V-M, Siitari H, Lövgren T. Europium as a label in time-resolved immunofluorometric assays. Anal Biochem. 1984;137(2):335–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Huhtinen P, Soukka T, Lövgren T, Härmä H. Immunoassay of total prostate-specific antigen using europium(III) nanoparticle labels and streptavidin–biotin technology. J Immunol Methods. 2004;294(1–2):111–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Ai K, Zhang B, Lu L. Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem. 2009;121(2):310–4.CrossRefGoogle Scholar
  101. 101.
    Zhao C, Song Y, Qu K, Ren J, Qu X. Luminescent rare-earth complex covalently modified single-walled carbon nanotubes: design, synthesis, and DNA sequence-dependent red luminescence enhancement. Chem Mater. 2010;22(20):5718–24.CrossRefGoogle Scholar
  102. 102.
    Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. 1994.Google Scholar
  103. 103.
    Singh S, Ullman EF, inventors; Google Patents, assignee. Metal chelate containing compositions for use in chemiluminescent assays. US patent 6,180,354. 2001.Google Scholar
  104. 104.
    Ullman EF, Kirakossian H, Pease JS, Daniloff Y, Wagner DB, inventors; Google Patents, assignee. Mixture of suspendable particles, one type is chemiluminescent compound capable of reacting with singlet oxygen, the other type is photosensitizer which is capable of activating oxygen to its singlet state. US patent 6,251,581. 2001.Google Scholar
  105. 105.
    Singh S, Ullman EF, inventors; Google Patents, assignee. Chemiluminescent compositions for use in detection of multiple analytes. US patent 6,406,667. 2002.Google Scholar
  106. 106.
    Poulsen F, Jensen KB. A luminescent oxygen channeling immunoassay for the determination of insulin in human plasma. J Biomol Screening. 2007.Google Scholar
  107. 107.
    Dafforn A, Kirakossian H, Lao K. Miniaturization of the luminescent oxygen channeling immunoassay (LOCITM) for use in multiplex array formats and other biochips. Clin Chem. 2000;46(9):1495–7.PubMedGoogle Scholar
  108. 108.
    Kaczmarek M, Staninski K, Elbanowski M. The influence of the donor atom on the chemiluminescence of Eu(III) ions in the system Eu(II)/(III)-Ligand-H2O2. Monatsh Chem. 1999;130(12):1443–51.Google Scholar
  109. 109.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol. 2005;16(1):55–62.PubMedCrossRefGoogle Scholar
  110. 110.
    Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L. Nanotechnology and biosensors. Biotechnol Adv. 2004;22(7):505–18.PubMedCrossRefGoogle Scholar
  111. 111.
    Reshetilov AN, Bezborodov AM. Nanobiotechnology and biosensor research. Appl Biochem Microbiol. 2008;44(1):1–5.CrossRefGoogle Scholar
  112. 112.
    Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys Rev. 1946;69(11–12):681.Google Scholar
  113. 113.
    Drexhage KH. IV inveraction of light with monomolecular dye lasers. Prog Opt. 1974;12:163–232.CrossRefGoogle Scholar
  114. 114.
    Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem. 2005;337(2):171–94.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Nabika H, Deki S. Surface-enhanced luminescence from Eu3+ complex nearby Ag colloids. Eur Phys J D. 2003;24(1):369–72.CrossRefGoogle Scholar
  116. 116.
    Nabika H, Deki S. Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase. J Phys Chem B. 2003;107(35):9161–4.CrossRefGoogle Scholar
  117. 117.
    Zhang J, Lakowicz JR. Enhanced luminescence of Phenyl-phenanthridine dye on aggregated small silver nanoparticles. J Phys Chem B. 2005;109(18):8701–6.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lakowicz RJ, Joanna M, Ignacy G, Zygmunt G, Chris DG. Radiative decay engineering: the role of photonic mode density in biotechnology. J Phys D: Appl Phys. 2003;36(14):R240.CrossRefGoogle Scholar
  119. 119.
    Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, De Vittorio M, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nano. 2006;1(2):126–30.CrossRefGoogle Scholar
  120. 120.
    Ganesh N, Zhang W, Mathias PC, Chow E, Soares JANT, Malyarchuk V, et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat Nano. 2007;2(8):515–20.CrossRefGoogle Scholar
  121. 121.
    Damm S, Lordan F, Murphy A, McMillen M, Pollard R, Rice J. Application of AAO matrix in aligned gold nanorod array substrates for surface-enhanced fluorescence and raman scattering. Plasmonics. 2014;9(6):1371–6.CrossRefGoogle Scholar
  122. 122.
    Gopinath A, Boriskina SV, Reinhard BM, Negro LD. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt Express. 2009;17(5):3741–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Malicka J, Gryczynski I, Fang J, Lakowicz JR. Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. Anal Biochem. 2003;317(2):136–46.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lakowicz JR, Malicka J, D’Auria S, Gryczynski I. Release of the self-quenching of fluorescence near silver metallic surfaces. Anal Biochem. 2003;320(1):13–20.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 2003;103(5):1685–758.PubMedCrossRefGoogle Scholar
  126. 126.
    Toftegaard R, Arnbjerg J, Daasbjerg K, Ogilby PR, Dmitriev A, Sutherland DS, et al. Metal-enhanced 1270 nm singlet oxygen phosphorescence. Angew Chem. 2008;120(32):6114–6.CrossRefGoogle Scholar
  127. 127.
    Toftegaard R, Arnbjerg J, Cong H, Agheli H, Sutherland Duncan S, Ogilby PR. Metal nanoparticle-enhanced radiative transitions: giving singlet oxygen emission a boost. Pure Appl Chem. 2011;83(4):885.CrossRefGoogle Scholar
  128. 128.
    Ragàs X, Gallardo A, Zhang Y, Massad W, Geddes CD, Nonell S. Singlet oxygen phosphorescence enhancement by silver islands films. J Phys Chem C. 2011;115(33):16275–81.CrossRefGoogle Scholar
  129. 129.
    Sailor MJ, Wu EC. Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles. Adv Funct Mater. 2009;19(20):3195–208.CrossRefGoogle Scholar
  130. 130.
    DeLouise LA, Kou PM, Miller BL. Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity. Anal Chem. 2005;77(10):3222–30.PubMedCrossRefGoogle Scholar
  131. 131.
    Syed LU, Swisher LZ, Huff H, Rochford C, Wang F, Liu J, et al. Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-based chemical analyses. Analyst. 2013;138(19):5600–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang H, Liu M, Huang G, Yu Y, Shen W, Cui H. Highly chemiluminescent gold nanopopcorns functionalized by N-(aminobutyl)-N-(ethylisoluminol) with lipoic acid as a co-stabilizing reagent. J Mater Chem B. 2013;1(7):970–7.CrossRefGoogle Scholar
  133. 133.
    Katrin K, Harald K, Irving I, Ramachandra RD, Michael SF. Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter. 2002;14(18):R597.CrossRefGoogle Scholar
  134. 134.
    Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, et al. Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Appl Surf Sci. 2008;254(22):7494–7.CrossRefGoogle Scholar
  135. 135.
    O’Neal DP, Motamedi M, Chen J, Cote GL, editors. Surface-enhanced Raman spectroscopy for the near real-time diagnosis of brain trauma in rats. Biomedical Spectroscopy: vibrational spectroscopy and other novel techniques; 2000 2000.Google Scholar
  136. 136.
    Efrima S, Bronk BV. Silver colloids impregnating or coating bacteria. J Phys Chem B. 1998;102(31):5947–50.CrossRefGoogle Scholar
  137. 137.
    Graham D, Mallinder BJ, Smith WE. Detection and identification of labeled DNA by surface enhanced resonance Raman scattering. Biopolymers. 2000;57(2):85–91.PubMedCrossRefGoogle Scholar
  138. 138.
    Uhlir A. Electrolytic shaping of germanium and silicon. Bell Syst Tech J. 1956;35.Google Scholar
  139. 139.
    Md Jani AM, Losic D, Voelcker NH. Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci. 2013;58(5):636–704.CrossRefGoogle Scholar
  140. 140.
    Choi HC, Buriak JM. Preparation and functionalization of hydride terminated porous germanium. Chem Commun. 2000;17:1669–70.CrossRefGoogle Scholar
  141. 141.
    Stewart MP, Buriak JM. Chemical and biological applications of porous silicon technology. Adv Mater. 2000;12(12):859–69.CrossRefGoogle Scholar
  142. 142.
    Boukherroub R, Morin S, Wayner DDM, Bensebaa F, Sproule GI, Baribeau JM, et al. Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes†. Chem Mater. 2001;13(6):2002–11.CrossRefGoogle Scholar
  143. 143.
    Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ, Ghadiri MR. A porous silicon-based optical interferometric biosensor. Science. 1997;278(5339):840–3.PubMedCrossRefGoogle Scholar
  144. 144.
    Janshoff A, Dancil K-PS, Steinem C, Greiner DP, Lin VSY, Gurtner C, et al. Macroporous p-Type silicon Fabry−Perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc. 1998;120(46):12108–16.CrossRefGoogle Scholar
  145. 145.
    Low SP, Voelcker NH, Canham LT, Williams KA. The biocompatibility of porous silicon in tissues of the eye. Biomaterials. 2009;30(15):2873–80.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhao Y, Zhao X, Gu Z. Photonic crystals in bioassays. Adv Funct Mater. 2010;20(18):2970–88.CrossRefGoogle Scholar
  147. 147.
    Sailor MJ, Heinrich JL, Lauerhaas JM. Luminescent porous silicon: synthesis, chemistry, and applications. In: Prashant VK, Dan M, editors. Studies in Surface Science and Catalysis. 103: Elsevier; 1997. p. 209–35.Google Scholar
  148. 148.
    Schwartz MP, Cunin F, Cheung RW, Sailor MJ. Chemical modification of silicon surfaces for biological applications. Phys Status Solidi A. 2005;202(8):1380–4.CrossRefGoogle Scholar
  149. 149.
    Szili EJ, Jane A, Low SP, Sweetman M, Macardle P, Kumar S, et al. Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sens Actuators, B. 2011;160(1):341–8.CrossRefGoogle Scholar
  150. 150.
    Lehmann V, Gosele U. Porous silicon formation: a quantum wire effect. Appl Phys Lett. 1991;58(8):856–8.CrossRefGoogle Scholar
  151. 151.
    Bisi O, Ossicini S, Pavesi L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep. 2000;38(1–3):1–126.CrossRefGoogle Scholar
  152. 152.
    Föll H, Christophersen M, Carstensen J, Hasse G. Formation and application of porous silicon. Mater Sci Eng R. 2002;39(4):93–141.CrossRefGoogle Scholar
  153. 153.
    Salonen J, Lehto V-P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J. 2008;137(1):162–72.CrossRefGoogle Scholar
  154. 154.
    Lauerhaas JM, Sailor MJ. Chemical modification of the photoluminescence quenching of porous silicon. Science. 1993;261(5128):1567–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Song JH, Sailor MJ. Chemical modification of crystalline porous silicon surfaces. Comments Inorg Chem. 1999;21(1–3):69–84.CrossRefGoogle Scholar
  156. 156.
    Tsybeskov L, Fauchet PM. Correlation between photoluminescence and surface species in porous silicon: Low?temperature annealing: AIP; 1994. 1983–5 p.Google Scholar
  157. 157.
    Li H-L, Fu A-P, Xu D-S, Guo, Gui L-L, Tang Y-Q. In situ silanization reaction on the surface of freshly prepared porous silicon. Langmuir. 2002;18(8):3198–202.CrossRefGoogle Scholar
  158. 158.
    Low SP, Williams KA, Canham LT, Voelcker NH. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials. 2006;27(26):4538–46.PubMedCrossRefGoogle Scholar
  159. 159.
    Aissaoui N, Bergaoui L, Landoulsi J, Lambert J-F, Boujday S. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir. 2011;28(1):656–65.PubMedCrossRefGoogle Scholar
  160. 160.
    Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH. Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir. 2011;27(15):9497–503.PubMedCrossRefGoogle Scholar
  161. 161.
    Priano G, Acquaroli LN, Lasave LC, Battaglini F, Arce RD, Koropecki RR. Rationally designed porous silicon as platform for optical biosensors. Thin Solid Films. 2012;520(20):6434–9.CrossRefGoogle Scholar
  162. 162.
    Chiang C-H, Ishida H, Koenig JL. The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci. 1980;74(2):396–404.CrossRefGoogle Scholar
  163. 163.
    Kim J, Seidler P, Wan LS, Fill C. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J Colloid Interface Sci. 2009;329(1):114–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Lapin NA, Chabal YJ. Infrared characterization of biotinylated silicon oxide surfaces, surface stability, and specific attachment of streptavidin. J Phys Chem B. 2009;113(25):8776–83.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62(5):1005–28.PubMedCrossRefGoogle Scholar
  166. 166.
    Alauzun J, Mehdi A, Reye C, Corriu R. Direct synthesis of ordered mesoporous silica containing iodopropyl groups. A useful function for chemical modifications. New J Chem. 2007;31(6):911–5.CrossRefGoogle Scholar
  167. 167.
    Böcking T, Kilian KA, Gaus K, Gooding JJ. Modifying porous silicon with self-assembled monolayers for biomedical applications: the influence of surface coverage on stability and biomolecule coupling. Adv Funct Mater. 2008;18(23):3827–33.CrossRefGoogle Scholar
  168. 168.
    Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ. Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc. 2002;149(2):H59–63.CrossRefGoogle Scholar
  169. 169.
    Buriak JM. Organometallic chemistry on silicon and germanium surfaces. Chem Rev. 2002;102(5):1271–308.PubMedCrossRefGoogle Scholar
  170. 170.
    Jenie SNA, Pace S, Sciacca B, Brooks RD, Plush SE, Voelcker NH. Lanthanide luminescence enhancements in porous silicon resonant microcavities. ACS Appl Mater Interfaces. 2014;6(15):12012–21.PubMedCrossRefGoogle Scholar
  171. 171.
    Salonen J, Lehto VP, Björkqvist M, Laine E, Niinistö L. Studies of thermally-carbonized porous silicon surfaces. Phys Status Solidi A. 2000;182(1):123–6.CrossRefGoogle Scholar
  172. 172.
    Sciacca B, Alvarez SD, Geobaldo F, Sailor MJ. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction. Dalton Trans. 2010;39(45):10847–53.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Salonen J, Laine E, Niinisto L. Thermal carbonization of porous silicon surface by acetylene. J Appl Phys. 2002;91(1):456–61.CrossRefGoogle Scholar
  174. 174.
    Salonen J, Björkqvist M, Laine E, Niinistö L. Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci. 2004;225(1–4):389–94.CrossRefGoogle Scholar
  175. 175.
    Björkqvist M, Salonen J, Paski J, Laine E. Characterization of thermally carbonized porous silicon humidity sensor. Sens Actuators, A. 2004;112(2–3):244–7.CrossRefGoogle Scholar
  176. 176.
    Salonen J, Tuura J, Björkqvist M, Lehto VP. Sub-ppm trace moisture detection with a simple thermally carbonized porous silicon sensor. Sens Actuators, B. 2006;114(1):423–6.CrossRefGoogle Scholar
  177. 177.
    Tuura J, Björkqvist M, Salonen J, Lehto V-P. Electrically isolated thermally carbonized porous silicon layer for humidity sensing purposes. Sens Actuators, B. 2008;131(2):627–32.CrossRefGoogle Scholar
  178. 178.
    Jalkanen T, Mäkilä E, Suzuki YI, Urata T, Fukami K, Sakka T, et al. Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions. Adv Funct Mater. 2012;22(18):3890–8.CrossRefGoogle Scholar
  179. 179.
    Jalkanen T, Mäkilä E, Sakka T, Salonen J, Ogata Y. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Res Lett. 2012;7(1):1–6.CrossRefGoogle Scholar
  180. 180.
    De Stefano L, Rea I, Giardina P, Armenante A, Rendina I. Protein-modified porous silicon nanostructures. Adv Mater. 2008;20(8):1529–33.CrossRefGoogle Scholar
  181. 181.
    Linder MB. Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci. 2009;14(5):356–63.CrossRefGoogle Scholar
  182. 182.
    Pavesi L, Mulloni V. All porous silicon microcavities: growth and physics. J Lumin. 1998;80(1–4):43–52.CrossRefGoogle Scholar
  183. 183.
    Ghulinyan M, Oton CJ, Bonetti G, Gaburro Z, Pavesi L. Free-standing porous silicon single and multiple optical cavities. J Appl Phys. 2003;93(12):9724–9.CrossRefGoogle Scholar
  184. 184.
    Lorenzo E, Oton CJ, Capuj NE, Ghulinyan M, Navarro-Urrios D, Gaburro Z, et al. Fabrication and optimization of rugate filters based on porous silicon. Phys Status Solidi C. 2005;2(9):3227–31.CrossRefGoogle Scholar
  185. 185.
    Mazzoleni C, Pavesi L. Application to optical components of dielectric porous silicon multilayers. Appl Phys Lett. 1995;67(20):2983–5.CrossRefGoogle Scholar
  186. 186.
    Pavesi L. Porous silicon dielectric multilayers and microcavities. Riv Nuovo Cim. 1997;20(10):1–76.CrossRefGoogle Scholar
  187. 187.
    Theiß W. Optical properties of porous silicon. Surf Sci Rep. 1997;29(3–4):91–192.CrossRefGoogle Scholar
  188. 188.
    De Stefano L, Moretti L, Rendina I, Rossi AM. Porous silicon microcavities for optical hydrocarbons detection. Sensors Actuators A. 2003;104(2):179–82.CrossRefGoogle Scholar
  189. 189.
    Ouyang H, Fauchet PM, editors. Biosensing using porous silicon photonic bandgap structures. Proceeding SPIE 6005, photonic crystals and photonic crystal fibers for sensing applications. 2005.Google Scholar
  190. 190.
    Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990;57(10):1046–8.CrossRefGoogle Scholar
  191. 191.
    Saar A. Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J Nanophotonics. 2009;3:032501.CrossRefGoogle Scholar
  192. 192.
    Chan S, Li Y, Rothberg LJ, Miller BL, Fauchet PM. Nanoscale silicon microcavities for biosensing. Mater Sci Eng, C. 2001;15(1–2):277–82.CrossRefGoogle Scholar
  193. 193.
    Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL. Porous silicon microcavities for biosensing applications. Phys Status Solidi A. 2000;182(1):541–6.CrossRefGoogle Scholar
  194. 194.
    Palestino G, Martin M, Agarwal V, Legros R, Cloitre T, Zimányi L, et al. Detection and light enhancement of glucose oxidase adsorbed on porous silicon microcavities. Phys Status Solidi C. 2009;6(7):1624–8.CrossRefGoogle Scholar
  195. 195.
    Estephan E, Saab M-B, Agarwal V, Cuisinier FJG, Larroque C, Gergely C. Peptides for the Biofunctionalization of Silicon for Use in Optical Sensing with Porous Silicon Microcavities. Adv Funct Mater. 2011;21(11):2003–11.Google Scholar
  196. 196.
    Weiss SM, Fauchet PM. Electrically tunable porous silicon active mirrors. Phys Status Solidi A. 2003;197(2):556–60.CrossRefGoogle Scholar
  197. 197.
    Ouyang H, Striemer CC, Fauchet PM. Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl Phys Lett. 2006;88(16):163108.CrossRefGoogle Scholar
  198. 198.
    De Stefano L, Moretti L, Rendina I, Rossi AM. Time-resolved sensing of chemical species in porous silicon optical microcavity. Sens Actuators, B. 2004;100(1–2):168–72.CrossRefGoogle Scholar
  199. 199.
    Wu C, Rong G, Xu J, Pan S, Zhu Y. Physical analysis of the response properties of porous silicon microcavity biosensor. Phys E. 2012;44:1787–91.CrossRefGoogle Scholar
  200. 200.
    Jin L, Li M, He J-J. Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source. Opt Lett. 2011;36(7):1128–30.PubMedCrossRefGoogle Scholar
  201. 201.
    Setzu S, Ferrand P, Romestain R. Optical properties of multilayered porous silicon. Mater Sci Eng B. 2000;69–70:34–42.CrossRefGoogle Scholar
  202. 202.
    Sciacca B, Frascella F, Venturello A, Rivolo P, Descrovi E, Giorgis F, et al. Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules. Sens Actuators, B. 2009;137(2):467–70.CrossRefGoogle Scholar
  203. 203.
    Setzu S, Létant S, Solsona P, Romestain R, Vial JC. Improvement of the luminescence in p-type as-prepared or dye impregnated porous silicon microcavities. J Lumin. 1998;80(1–4):129–32.CrossRefGoogle Scholar
  204. 204.
    Qiao H, Guan B, Bocking T, Gal M, Gooding JJ, Reece PJ. Optical properties of II-VI colloidal quantum dot doped porous silicon microcavities. Appl Phys Lett. 2010;96(16):161106.CrossRefGoogle Scholar
  205. 205.
    Poitras CB, Lipson M, Du H, Hahn MA, Krauss TD. Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity. Appl Phys Lett. 2003;82(23):4032–4.CrossRefGoogle Scholar
  206. 206.
    DeLouise LA, Ouyang H. Photoinduced fluorescence enhancement and energy transfer effects of quantum dots porous silicon. Phys Status Solidi C. 2009;6(7):1729–35.CrossRefGoogle Scholar
  207. 207.
    Rossi AM, Wang L, Reipa V, Murphy TE. Porous silicon biosensor for detection of viruses. Biosens Bioelectron. 2007;23(5):741–5.PubMedCrossRefGoogle Scholar
  208. 208.
    Krismastuti FSH, Pace S, Voelcker NH. Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection. Adv Funct Mater. 2014;24(23):3639–50.CrossRefGoogle Scholar
  209. 209.
    Levitsky IA, Euler WB, Tokranova N, Rose A. Fluorescent polymer-porous silicon microcavity devices for explosive detection. Appl Phys Lett. 2007;90(4), 041904–1 - -3.CrossRefGoogle Scholar
  210. 210.
    Moadhen A, Elhouichet H, Oueslati M, Férid M. Photoluminescence properties of europium-doped porous silicon nanocomposites. J Lumin. 2002;99(1):13–7.CrossRefGoogle Scholar
  211. 211.
    Moadhen A, Elhouichet H, Canut B, Sandu CS, Oueslati M, Roger JA. Evidence for energy transfer between Eu3+ and Tb3+ in porous silicon matrix. Mater Sci Eng B. 2003;105(1–3):157–60.CrossRefGoogle Scholar
  212. 212.
    Elhouichet H, Othman L, Moadhen A, Oueslati M, Roger JA. Enhanced photoluminescence of Tb3+ and Eu3+ induced by energy transfer from SnO2 and Si nanocrystallites. Mater Sci Eng B. 2003;105(1–3):8–11.CrossRefGoogle Scholar
  213. 213.
    Koenderink AF. On the use of Purcell factors for plasmon antennas. Opt Lett. 2010;35(24):4208–10.PubMedCrossRefGoogle Scholar
  214. 214.
    Jenie SNA, Du Z, McInnes SJP, Ung P, Graham B, Plush SE, et al. Biomolecule detection in porous silicon based microcavities via europium luminescence enhancement. J Mater Chem B. 2014.Google Scholar
  215. 215.
    Lee H-K, Cao H, Rana TM. Design, microwave-assisted synthesis, and photophysical properties of small molecule organic antennas for luminescence resonance energy transfer. J Comb Chem. 2005;7(2):279–84.PubMedCrossRefGoogle Scholar
  216. 216.
    Bisswanger H. Enzyme assays. Perspect Sci. 2014;1(1–6):41–55.CrossRefGoogle Scholar
  217. 217.
    Ispas CR, Crivat G, Andreescu S. Review: recent developments in enzyme-based biosensors for biomedical analysis. Anal Lett. 2012;45(2–3):168–86.CrossRefGoogle Scholar
  218. 218.
    Ouyang H, Christophersen M, Viard R, Miller BL, Fauchet PM. Macroporous silicon microcavities for macromolecule detection. Adv Funct Mater. 2005;15(11):1851–9.CrossRefGoogle Scholar
  219. 219.
    Jenie SNA, Prieto-Simon B, Voelcker NH. Development of l-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers. Biosens Bioelectron. 2015;74:637–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. N. Aisyiyah Jenie
    • 1
    • 3
  • Sally E. Plush
    • 2
  • Nicolas H. Voelcker
    • 1
    • 4
    Email author
  1. 1.ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries InstituteUniversity of South AustraliaMawson LakesAustralia
  2. 2.School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia
  3. 3.Research Centre for ChemistryIndonesian Institute of Sciences, PUSPIPTEKTangerangIndonesia
  4. 4.AdelaideAustralia

Personalised recommendations