Pharmaceutical Research

, Volume 33, Issue 6, pp 1413–1425 | Cite as

Mutual Influence of Mannitol and Trehalose on Crystallization Behavior in Frozen Solutions

  • Sampreeti Jena
  • Raj Suryanarayanan
  • Alptekin AksanEmail author
Research Paper



Phase separation of trehalose during freeze-drying could render it ineffective as a lyoprotectant. The bulking agent, mannitol, on the other hand, should crystallize readily upon freezing. It is therefore imperative to understand the mutual interaction of these sugars during freezing to ensure preservation of the API during freeze-drying.


We investigated the effect of mannitol to trehalose ratio (R) on the crystallization behavior of both solutes using Differential Scanning Calorimetry, X-Ray Crystallography and FTIR Spectrosopy during controlled freezing and annealing.


When R = 1, crystallization of both mannitol (as hemihydrate) and trehalose (as α-anhydrate) were observed. When R ≥ 1, extent of mannitol crystallization was directly proportional to the value of R. When R < 1, trehalose completely suppressed mannitol crystallization. At R > 1, the freeze concentrate was heterogeneous and characterized by two glass transitions – the lower temperature transition (Tg”) attributed to systems containing “extra” unfrozen water. When heated above Tg”, crystallization of mannitol and the associated unfrozen water resulted in Tg’ (glass transition temperature of the freeze-concentrate).


R and not the total solute concentration, dictates the composition of the freeze concentrate as well as the physical stability of the excipients

Key Words

crystallization frozen IR spectroscopy mannitol microscopy trehalose X-ray diffractometry 



Active pharmaceutical ingredient


Differential scanning calorimetry


Freeze-concentrated liquid


Fourier transform infrared spectroscopy




Powder X-ray Diffractometry



This research was funded by an NSF grant (CBET-1335936) to A.A. The authors are grateful to Dr. Seema Thakral for guidance while performing the powder X-ray diffraction. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Supplementary material

11095_2016_1883_MOESM1_ESM.docx (313 kb)
ESM 1 (DOCX 313 kb)


  1. 1.
    Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.CrossRefPubMedGoogle Scholar
  2. 2.
    K-i I, Yoshioka S, Terao T. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm Res. 1993;10(8):1232–7.CrossRefGoogle Scholar
  3. 3.
    Ken-ichi I, Sumie Y, Yasushi T. The effects of additives on the stability of freeze-dried β-galactosidase stored at elevated temperature. Int J Pharm. 1991;71(1):137–46.CrossRefGoogle Scholar
  4. 4.
    Chatterjee K, Shalaev EY, Suryanarayanan R. Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery. J Pharm Sci. 2005;94(4):809–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Chatterjee K, Shalaev EY, Suryanarayanan R. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent. J Pharm Sci. 2005;94(4):798–808.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson RE, Kirchhoff CF, Gaud HT. Mannitol–sucrose mixtures—versatile formulations for protein lyophilization. J Pharm Sci. 2002;91(4):914–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Tang XC, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang DQ, Hey JM, Nail SL. Effect of collapse on the stability of freeze‐dried recombinant factor VIII and α‐amylase. J Pharm Sci. 2004;93(5):1253–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou R, Schlam RF, Yin S, Gandhi RB, Adams ML. Scale considerations for selection of saccharide excipients for liquid formulations. J Pharm Sci. 2011;100(4):1605–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Varshney DB, Kumar S, Shalaev EY, Sundaramurthi P, Kang S-W, Gatlin LA, et al. Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration. Pharm Res. 2007;24(3):593–604.CrossRefPubMedGoogle Scholar
  11. 11.
    Varshney DB, Sundaramurthi P, Kumar S, Shalaev EY, Kang S-W, Gatlin LA, et al. Phase transitions in frozen systems and during freeze–drying: quantification using synchrotron X-Ray diffractometry. Pharm Res. 2009;26(7):1596–606.CrossRefPubMedGoogle Scholar
  12. 12.
    Sundaramurthi P, Shalaev E, Suryanarayanan R. “pH swing” in frozen solutions consequence of sequential crystallization of buffer components. J Phys Chem Lett. 2009;1(1):265–8.CrossRefGoogle Scholar
  13. 13.
    Szkudlarek BA. Selective crystallization of phosphate buffer components and pH changes during freezing: implications to protein stability: university of Michigan. 1997.Google Scholar
  14. 14.
    Carpenter JF, Prestrelski SJ, Arakawa T. Separation of freezing-and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. Enzyme activity and calorimetric studies. Arch Biochem Biophys. 1993;303(2):456–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Piedmonte DM, Summers C, McAuley A, Karamujic L, Ratnaswamy G. Sorbitol crystallization can lead to protein aggregation in frozen protein formulations. Pharm Res. 2007;24(1):136–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Sundaramurthi P, Patapoff TW, Suryanarayanan R. Crystallization of trehalose in frozen solutions and its phase behavior during drying. Pharm Res. 2010;27(11):2374–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Sundaramurthi P, Shalaev E, Suryanarayanan R. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions. J Phys Chem B. 2010;114(14):4915–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Sundaramurthi P, Suryanarayanan R. Trehalose crystallization during freeze-drying: implications on lyoprotection. J Phys Chem Lett. 2009;1(2):510–4.CrossRefGoogle Scholar
  19. 19.
    Sundaramurthi P, Suryanarayanan R. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying. Pharm Res. 2010;27(11):2384–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Lu X, Pikal MJ. Freeze‐Drying of Mannitol–Trehalose–Sodium Chloride‐Based Formulations: The Impact of Annealing on Dry Layer Resistance to Mass Transfer and Cake Structure. Pharm Dev Technol. 2004;9(1):85–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Crowe JH, Crowe LM, Carpenter JF, Wistrom CA. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987;242(1):1.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995;61(10):3592–7.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sun WQ, Leopold AC, Crowe LM, Crowe JH. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70(4):1769.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Esteves MI, Quintilio W, Sato RA, Raw I, De Araujo PS, Da Costa MHB. Stabilisation of immunoconjugates by trehalose. Biotechnol Lett. 2000;22(5):417–20.CrossRefGoogle Scholar
  25. 25.
    Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Liao X, Krishnamurthy R, Suryanarayanan R. Influence of processing conditions on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2007;24(2):370–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Archer D. New NIST-traceable standards for calibration and validation of DSC. J Therm Anal Calorim. 2006;85(1):131–4.CrossRefGoogle Scholar
  28. 28.
    Cavatur RK, Vemuri NM, Pyne A, Chrzan Z, Toledo-Velasquez D, Suryanarayanan R. Crystallization behavior of mannitol in frozen aqueous solutions. Pharm Res. 2002;19(6):894–900.CrossRefPubMedGoogle Scholar
  29. 29.
    Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stoettner H. Energy/temperature diagram and compression behavior of the polymorphs of D‐mannitol. J Pharm Sci. 2000;89(4):457–68.CrossRefPubMedGoogle Scholar
  30. 30.
    Rudnick J, Taylor P, Litt M, Hopfinger A. Theory of free volume in polymers. J Polym Sci Polym Phys Ed. 1979;17(2):311–20.CrossRefGoogle Scholar
  31. 31.
    Her L-M, Nail SL. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res. 1994;11(1):54–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Pyne A, Surana R, Suryanarayanan R. Crystallization of mannitol below Tg′ during freeze-drying in binary and ternary aqueous systems. Pharm Res. 2002;19(6):901–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze‐drying: Effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Pyne A, Surana R, Suryanarayanan R. Enthalpic relaxation in frozen aqueous trehalose solutions. Thermochim Acta. 2003;405(2):225–34.CrossRefGoogle Scholar
  35. 35.
    Powder Diffraction File. Hexagonal ice, card # 00-042-1142; D-trehalose dihydrate, card # 00-029-1955; trehalose anhydrate, card # 00-003-0312;β-D-mannitol, card # 00-022-1797; δ-D-mannitol, card # 00-022-1794. In.Powder Diffraction File. Newtown Square; 2004.Google Scholar
  36. 36.
    Toffel-Nadolny P. Infrared spectroscopic determinations of mannitol. Arch Kriminol. 1980;168(5–6):133–8.Google Scholar
  37. 37.
    Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989;28(9):3916–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Belton P, Gil A. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers. 1994;34(7):957–61.CrossRefPubMedGoogle Scholar
  39. 39.
    Lin S-Y, Chien J-L. In vitro simulation of solid-solid dehydration, rehydration, and solidification of trehalose dihydrate using thermal and vibrational spectroscopic techniques. Pharm Res. 2003;20(12):1926–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Ragoonanan V, Aksan A. Heterogeneity in desiccated solutions: implications for biostabilization. Biophys J. 2008;94(6):2212–27.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wolkers WF, Oliver AE, Tablin F, Crowe JH. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res. 2004;339(6):1077–85.CrossRefPubMedGoogle Scholar
  42. 42.
    Nicolajsen H, Hvidt A. Phase behavior of the system trehalose-NaCl-water. Cryobiology. 1994;31(2):199–205.CrossRefGoogle Scholar
  43. 43.
    Green JL, Angell CA. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem. 1989;93(8):2880–2.CrossRefGoogle Scholar
  44. 44.
    Miller DP, de Pablo JJ, Corti H. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm Res. 1997;14(5):578–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Mullin JW. Crystallization. Burlington: Elsevier Butterworth-Heinemann; 2001.Google Scholar
  46. 46.
    Luyet B, Rasmussen D. Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica. 1967;10(210):167–91.Google Scholar
  47. 47.
    Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2005;22(11):1978–85.CrossRefPubMedGoogle Scholar
  48. 48.
    Sussich F, Skopec C, Brady J, Cesàro A. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr Res. 2001;334(3):165–76.CrossRefPubMedGoogle Scholar
  49. 49.
    Malsam J, Aksan A. Hydrogen bonding and kinetic/thermodynamic transitions of aqueous trehalose solutions at cryogenic temperatures. J Phys Chem B. 2009;113(19):6792–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Elias ME, Elias AM. Trehalose + water fragile system: properties and glass transition. J Mol Liq. 1999;83(1):303–10.CrossRefGoogle Scholar
  51. 51.
    Kawai H, Sakurai M, Inoue Y, Chujo R, Kobayashi S. Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology. 1992;29(5):599–606.CrossRefPubMedGoogle Scholar
  52. 52.
    Magazu S, Migliardo P, Musolino AM, Sciortino MT. α, α-Trehalose-water solutions. 1. Hydration phenomena and anomalies in the acoustic properties. J Phys Chem B. 1997;101(13):2348–51.CrossRefGoogle Scholar
  53. 53.
    Brown GM, Levy HA. α-D-glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis. Science. 1965;147(3661):1038–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Brown GM, Rohrer DC, Berking B, Beevers CA, Gould RO, Simpson R. The crystal structure of α, α-trehalose dihydrate from three independent X-ray determinations. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem. 1972;28(11):3145–58.CrossRefGoogle Scholar
  55. 55.
    Jeffrey GA. Intramolecular hydrogen-bonding in carbohydrate crystal-structures. Carbohydr Res. 1973;28(2):233–41.CrossRefGoogle Scholar
  56. 56.
    Bennett AN, Bennett AR, Nees AR. Viscosity of beet house sirups. Ind Eng Chem. 1930;22(1):91–6.CrossRefGoogle Scholar
  57. 57.
    Miller DP, de Pablo JJ. Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function. J Phys Chem B. 2000;104(37):8876–83.CrossRefGoogle Scholar
  58. 58.
    Km L, Labuza TP. Crystallization inhibition of an amorphous sucrose system using raffinose. J Zhejiang Univ (Sci). 2006;2:67–79.Google Scholar
  59. 59.
    Laos AK, Kirs BE, Kikkas CA, Paalme DT. Crystallization of the supersaturated sucrose solutions in the presence of fructose, glucose and corn syrup. In.; 2007. p. 16–20.Google Scholar
  60. 60.
    Leinen KM, Labuza TP. Crystallization inhibition of an amorphous sucrose system using raffinose. J Zhejiang Univ Sci B. 2006;7(2):85–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Smythe BM. Sucrose crystal growth. II. Rate of crystal growth in the presence of impurities. Aust J Chem. 1967;20(6):1097–114.CrossRefGoogle Scholar
  62. 62.
    Laliberté M. Model for calculating the viscosity of aqueous solutions. J Chem Eng Data. 2007;52(2):321–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sampreeti Jena
    • 1
  • Raj Suryanarayanan
    • 2
  • Alptekin Aksan
    • 1
    • 3
    Email author
  1. 1.Biostabilization Laboratory, Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of PharmaceuticsUniversity of MinnesotaMinneapolisUSA
  3. 3.Mechanical Engineering Department & The BioTechnology InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations