Pharmaceutical Research

, Volume 33, Issue 4, pp 893–908 | Cite as

Nanocarriers to Enhance the Accumulation of Vitamin K1 into the Skin

  • Virginia Campani
  • Marco Biondi
  • Laura Mayol
  • Francesco Cilurzo
  • Silvia Franzé
  • Michele Pitaro
  • Giuseppe De Rosa
Research Paper



Vitamin K1 (VK1) is a molecule abundant in some species of leaf vegetables with beneficial effects in humans following administration on the skin. This work investigates the possibility to use formulations based on lipid vesicles, namely liposomes, transfersomes and ethosomes, suitable to be administered on the skin by nebulization and alternative to fat semisolid preparations present on the market.


Lipid vesicles encapsulating VK1 were prepared and characterized. Ex-vivo experiments on Franz cells were carried out to study the VK1 accumulation/permeation in/through the skin. Vesicles interaction with the skin was investigated by confocal laser scanning microscopy (CLSM) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy.


All developed carriers were stable following long-term storage and were not altered following nebulization. In ex-vivo experiments, vesicles with the highest deformability index, namely transfersomes and ethosomes, led to an enhanced VK1 accumulation/permeation into/through the skin. Interestingly, the nebulization of the vesicles led to a further increase of VK1 accumulation into the skin.


In conclusion, to achieve a local effect of VK1 on the skin, the topical nebulization of VK1-containing transfersomes could offer a good compromise between a high VK1 penetration into the skin and a limited permeation through it.


Franz cells lipid-vesicles nebulization skin vitamin K1 



Attenuated total reflection Fourier transform infrared spectroscopy










Confocal laser scanning microscopy


Deformation index


Epidermal growth factor receptor




Nebulized ethosomes


Iron thiocyanate




Nebulized liposomes


1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein-ammonium salt


Polydispersity index


Sodium cholate


Soy phosphatidylcholine




Nebulized Transfersome


Vitamin K1




Zeta potential



The PhD course of Virginia Campani was supported with a grant from Regione Campania - research project “Dottorati di Ricerca in Azienda – POR – Campania FSE 2007-2013”.


  1. 1.
    Le PE. Vitamine. Milano: Ulrico Hoepli Editore; 1949.Google Scholar
  2. 2.
    Lou WW, Quintana AT, Geronemus RG, Grossman MC. Effects of topical vitamin K and retinol on laser-induced purpura on nonlesionalskin. Dermatol Surg. 1999;25:942–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Lopes LB, Speretta FF, Bentley MV. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32:209–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Ocvirk J. Management of cetuximab-induced skin toxicity with the prophylactic use of topical vitamin K1 cream. Radiol Oncol. 2010;44:256–66.CrossRefGoogle Scholar
  5. 5.
    Pinta F, Ponzetti A, Spadi R, Fanchini L, Zanini M, Mecca C, et al. Pilot clinical trial on the efficacy of prophylactic use of vitamin K1-based cream (Vigorskin) to prevent cetuximab-induced skin rash in patients with metastatic colorectal cancer. Clin Colorectal Cancer. 2014;13(1):62–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Tan EH, Chan A. Evidence-based treatment options for the management of skin toxicities associated with epidermal growth factor receptors inhibitors. Ann Pharmacother. 2009;43(10):1658–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Li TH, Perez-Soler R. Skin toxicities associated with epidermal growth factor receptor inhibitors. Targ Oncol. 2009;4(2):107–19.CrossRefGoogle Scholar
  8. 8.
    Hemmati AA, Houshmand G, Ghorbanzadeh B, Nemati M, Behmanesh MA. Topical vitamin K1 promotes repair of full thickness wound in rat. Indian J Pharmacol. 2014;46(4):409–12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pierre MB, Dos Santos MCI. Liposomal system as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res. 2011;303(9):607–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes as carriers for skin delivery of ketotife. Pharmazie. 2007a;133–137.Google Scholar
  11. 11.
    Elsayed MM, Abdallah O., Nagga, VF, Khalafallah NM. PG-liposomes: novel lipid vesicles for skin delivery of drug. J Pharm Pharmacol. 2007b;1447–1450.Google Scholar
  12. 12.
    Yu HY, Liao HM. Triamcinolone permeation from different liposome formulations trough rat skin in vitro. Int J Pharm. 1996;127:1–7.CrossRefGoogle Scholar
  13. 13.
    Deo MR, Sant VP, Parekh SR, Khopade AJ, Banakar UV. Proliposome-based transdermal delivery of levonorgestrel. J Biomater Appl. 1997;12:77–88.PubMedGoogle Scholar
  14. 14.
    Liu H, Pan WS, Tang R, Luo SD. Topical delivery of different acyclovir palmitate liposomes formulations trough rat skin in vitro. Pharmazie. 2004;59:203–6.PubMedGoogle Scholar
  15. 15.
    Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104:226–32.CrossRefPubMedGoogle Scholar
  16. 16.
    El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196:63–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Trotta M, Peira Debernardi E, Gallarate FM. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm. 2002;241:319–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Trotta M, Peira E, Carlotti ME, Gallarate M. Deformableliposomes for dermaladministration of methotrexate. Int J Pharm. 2004;270:119–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Boinpally RR, Zhou SL, Poondru S, Devraj G, Jasti BR. Lecithin vesicles for topical delivery of diclofenac. Eur J Pharm. 2003;56:389–92.CrossRefGoogle Scholar
  20. 20.
    Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim et Biophys Acta. 2001;1514:191–205.CrossRefGoogle Scholar
  21. 21.
    Cevc G, Blume G. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes. Biochim Biophys Acta. 2003;1614:156–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim Biophys Acta. 2004;1663:61–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Touitou E. Compositions for applying active substances to or through the skin. US Patent. 1996;5:540–934.Google Scholar
  24. 24.
    Touitou E, Alkabes M, Dayan N. Ethosomes: novel lipid vesicular system for enhanced delivery. Pharm Res. 1997;14:305–6.Google Scholar
  25. 25.
    Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Rel. 2000;65:403–18.CrossRefGoogle Scholar
  26. 26.
    Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidylHCl: ethosomes vs liposomes. Biomaterials. 2000;21:1879–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Ainbinder D, Paolino D, Fresta M, Touitou E. Drug delivery applications with ethosomes. J Biomed Nanotechnol. 2010;6(5):558–68.CrossRefPubMedGoogle Scholar
  28. 28.
    Paoline D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release. 2005;106:99–110.CrossRefGoogle Scholar
  29. 29.
    Batzri S. Single bilayer liposomes prepared without sonication. Biochem Biophys Acta. 1973;298:1015.CrossRefPubMedGoogle Scholar
  30. 30.
    Scognamiglio I, De Stefano D, Campani V, Mayol L, Carnuccio R, Fabbrocini G, et al. Nanocarriers for topical administration of resveratrol: a comparative study. Int J of Pharm. 2013;179–187.Google Scholar
  31. 31.
    Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Manca ML, Zaru M, Manconi M, Lai F, Valenti D, Sinico C, et al. Glycerosomes: a new tool for effective dermal and transdermal drug delivery. Int J Pharm. 2013;455(1–2):66–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Gillet A, Lecomte F, Hubert P, et al. Skin penetration behaviour of liposomes as a function of their composition. Eur J Pharm Biopharm. 2011;79:43–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Da Silva ALM, Contri RV, Jornada DS, Pohlmann AR, Guterres SS. Vitamin K-1-loaded lipid-core nanocapsules: physiochemical characterization and in vitro skin permeation. Skin Res Technol. 2013;19:223–30.CrossRefGoogle Scholar
  35. 35.
    Mollica F, Biondi M, Muzzi S, Ungaro F, Quaglia F, La Rotonda MI, et al. Mathematical modelling of the evolution of protein distribution within single PLGA microspheres: prediction of local concentration profiles and release kinetics. J Mater Sci Mater Med. 2008;4:1587–93.CrossRefGoogle Scholar
  36. 36.
    Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. PNAS. 2005;102(13):4688–93.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Damien F, Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J Invest Dermatol. 2010;128:611–4.CrossRefGoogle Scholar
  38. 38.
    Cilurzo F, Vistoli G, Selmin F, Gennari CGM, Musazzi UM, Franzè S, et al. An insight into the skin penetration enhancement mechanism of –methylpyrrolidone. Mol Pharm. 2014;11(3):1014–21.CrossRefPubMedGoogle Scholar
  39. 39.
    Casiraghi A, Minghetti P, Cilurzo F, Montanari L, Naik A. Occlusive properties of monolayer patches: in vitro and in vivo evaluation. Pharm Res. 2002;19(4):423–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Ogiso T, Yamaguchi T, Iwaki M, Tanino T, Miyake Y. Effect of positively and negatively charged liposomes on skin permeation of drugs. J Drug Target. 2001;9(1):49–59.CrossRefPubMedGoogle Scholar
  41. 41.
    Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, et al. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm. 2005;59(1):161–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Campani V, Marchese D, Pitaro MT, Pitaro M, Grieco P, De Rosa G. Development of a liposome-based formulation for vitamin K1 nebulization on the skin. Int J Nanomedicine. 2014;9:1823–32.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Elhissi AM, Giebultowicz J, Stec AA, Wroczynski P, Ahmed WAlhnan MA, Phoenix D, et al. Nebulization of ultradeformable liposomes: the influence of aerosolization mechanism and formulation excipients. Int J Pharm. 2012;436(1–2):519–26.CrossRefPubMedGoogle Scholar
  44. 44.
    Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst. 1996;13(3–4):257–388.CrossRefPubMedGoogle Scholar
  45. 45.
    Godin B, Touitou E. Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst. 2003;20Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Virginia Campani
    • 1
  • Marco Biondi
    • 1
  • Laura Mayol
    • 1
  • Francesco Cilurzo
    • 2
  • Silvia Franzé
    • 2
  • Michele Pitaro
    • 3
  • Giuseppe De Rosa
    • 1
  1. 1.Department of PharmacyUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Department of Pharmaceutical SciencesUniversità di MilanoMilanItaly
  3. 3.XenusSrlRomeItaly

Personalised recommendations