Pharmaceutical Research

, Volume 33, Issue 2, pp 328–336 | Cite as

Pharmacokinetic Properties of a Novel d-Peptide Developed to be Therapeutically Active Against Toxic β-Amyloid Oligomers

  • Leonie H. E. Leithold
  • Nan Jiang
  • Julia Post
  • Tamar Ziehm
  • Elena Schartmann
  • Janine Kutzsche
  • N. Jon Shah
  • Jörg Breitkreutz
  • Karl-Josef Langen
  • Antje WilluweitEmail author
  • Dieter WillboldEmail author
Research Paper



It has been shown that amyloid β (Aβ) oligomers play an important role in the pathology of Alzheimer’s disease (AD). D3, a peptide consisting solely of d-enantiomeric amino acid residues, was developed to specifically eliminate Aβ oligomers and is therapeutically active in transgenic AD mice. d-peptides have several advantages over l-peptides, but little is known about their pharmacokinetic potential in vivo. Here, we analysed the pharmacokinetic properties of RD2, a rationally designed and potent D3 derivative.


The pharmacokinetic analysis was performed using 3H-RD2 after administration via several routes in mice. The time dependent amount of radiolabelled RD2 was measured in plasma and several organ homogenates by liquid scintillation counting. Furthermore, binding to plasma proteins was estimated.


RD2 penetrates into the brain, where it is thought to implement its therapeutic function. All administration routes result in a maximal brain concentration per dose (Cmax/D) of 0.06 (μg/g)/(mg/kg) with brain/plasma ratios ranging between 0.7 and 1.0. RD2 shows a small elimination constant and a long terminal half-life in plasma of more than 2 days. It also exhibits high bioavailability after i.p., s.c. or p.o. administration.


These excellent pharmacokinetic properties confirm that RD2 is a very promising drug candidate for AD.


Alzheimer’s disease d-enantiomer peptide pharmacokinetics preclinical 



Relative injected dose


Alzheimer’s disease


α1-acid glycoprotein


Area under the concentration-time curve


Area under the moment curve

Amyloid β








Disintegrations per minute




Unbound fraction


Human serum albumin








Mean absorption time


Mean residence time




per os, oral delivery


Correlation coefficient




Terminal half-life


Thin layer chromatography


Distribution volume in steady state


Terminal distribution volume


Terminal elimination rate constant



We thank Daniela Schumacher, Elias Bissong and Nicole Niemietz for the excellent technical assistance. Additionally, we thank Jörg Mauler for helping with the data analysis. D.W. was supported by grants from the “Portfolio Technology and Medicine” and the Helmholtz-Validierungsfonds of the Impuls und Vernetzungs-Fonds der Helmholtzgemeinschaft; K.J.L. and D.W. were supported by the “Portfolio Drug Research” of the Impuls und Vernetzungs-Fonds der Helmholtzgemeinschaft. The authors declare that they have no conflict of interest.


  1. 1.
    Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–51.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 2014;10(2):e47–92.CrossRefGoogle Scholar
  3. 3.
    Soto C. Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol Med Today. 1999;5(8):343–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Benilova I, Karran E, De Strooper B. The toxic a beta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15(3):349–57.CrossRefPubMedGoogle Scholar
  6. 6.
    DaRocha-Souto B, Scotton TC, Coma M, Serrano-Pozo A, Hashimoto T, Serenó L, et al. Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J Neuropathol Exp Neurol. 2011;70(5):360–76.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA. Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3 beta in primary cultured hippocampal neurons. J Neurosci. 2010;30(27):9166–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Sun N, Funke SA, Willbold D. A survey of peptides with effective therapeutic potential in Alzheimer’s disease rodent models or in human clinical studies. Mini Rev Med Chem. 2012;12(5):388–98.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Sato AK, Viswanathan M, Kent RB, Wood CR. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17(6):638–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Pauletti GM, Gangwar S, Siahaan TJ, Aubé J, Borchardt RT. Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev. 1997;27(2–3):235–56.CrossRefPubMedGoogle Scholar
  12. 12.
    van Regenmortel MHV, Muller S. D-peptides as immunogens and diagnostic reagents. Curr Opin Biotechnol. 1998;9(4):377–82.CrossRefPubMedGoogle Scholar
  13. 13.
    Soto C, Kindy MS, Baumann M, Frangione B. Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun. 1996;226(3):672–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Sela M, Zisman E. Different roles of D-amino acids in immune phenomena. FASEB J. 1997;11(6):449–56.PubMedGoogle Scholar
  15. 15.
    Dintzis HM, Symer DE, Dintzis RZ, Zawadzke LE, Berg JM. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins Struct Funct Genet. 1993;16(3):306–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, et al. Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry. 1999;38(21):6791–800.CrossRefPubMedGoogle Scholar
  17. 17.
    Poduslo JF, Curran GL, Kumar A, Frangione B, Soto C. beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood–brain barrier permeability and resistance to proteolytic degradation in plasma. J Neurobiol. 1999;39(3):371–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Schumacher TNM, Mayr LM, Minor DL, Milhollen MA, Burgess MW, Kim PS. Identification of D-peptide ligands through mirror-image phage display. Science. 1996;271(5257):1854–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Wiesehan K, Willbold D. Mirror-image phage display: aiming at the mirror. Chembiochem. 2003;4(9):811–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Funke SA, van Groen T, Kadish I, Bartnik D, Nagel-Steger L, Brener O, et al. Oral treatment with the D-enantiomeric peptide D3 improves the pathology and behavior of Alzheimer’s disease transgenic mice. ACS Chem Neurosci. 2010;1(9):639–48.CrossRefGoogle Scholar
  21. 21.
    van Groen T, Kadish I, Funke A, Bartnik D, Willbold D. Treatment with a beta 42 binding D-amino acid peptides reduce amyloid deposition and inflammation in APP/PS1 double transgenic mice. Adv Protein Chem Struct Biol. 2012;88:133–52.CrossRefPubMedGoogle Scholar
  22. 22.
    van Groen T, Wiesehan K, Funke SA, Kadish I, Nagel-Steger L, Willbold D. Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, a D-enantiomeric peptide identified by mirror image phage display. ChemMedChem. 2008;3(12):1848–52.CrossRefPubMedGoogle Scholar
  23. 23.
    van Groen T, Kadish I, Wiesehan K, Funke SA, Willbold D. In vitro and in vivo staining characteristics of small, fluorescent, Aβ42-binding D-enantiomeric peptides in transgenic AD mouse models. ChemMedChem. 2009;4(2):276–82.CrossRefPubMedGoogle Scholar
  24. 24.
    van Groen T, Kadish I, Funke SA, Bartnik D, Willbold D. Treatment with D3 removes amyloid deposits, reduces inflammation, and improves cognition in aged AbetaPP/PS1 double transgenic mice. J Alzheimers Dis. 2013;34(3):609–20.PubMedGoogle Scholar
  25. 25.
    Olubiyi OO, Frenzel D, Bartnik D, Glück JM, Brener O, Nagel-Steger L, et al. Amyloid aggregation inhibitory mechanism of arginine-rich D-peptides. Curr Med Chem. 2014;21(12):1448–57.CrossRefPubMedGoogle Scholar
  26. 26.
    Larson ME, Lesne SE. Soluble Abeta oligomer production and toxicity. J Neurochem. 2012;120 Suppl 1:125–39.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ferreira ST, Klein WL. The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011;96(4):529–43.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Pollaro L, Heinis C. Strategies to prolong the plasma residence time of peptide drugs. Med Chem Commun. 2010;1(5):319–24.CrossRefGoogle Scholar
  30. 30.
    Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64(9):1355–74.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Leonie H. E. Leithold
    • 1
  • Nan Jiang
    • 1
  • Julia Post
    • 1
  • Tamar Ziehm
    • 1
  • Elena Schartmann
    • 1
  • Janine Kutzsche
    • 1
  • N. Jon Shah
    • 2
  • Jörg Breitkreutz
    • 3
  • Karl-Josef Langen
    • 2
    • 4
  • Antje Willuweit
    • 2
    Email author
  • Dieter Willbold
    • 1
    • 5
    Email author
  1. 1.Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4)Forschungszentrum Jülich GmbHJülichGermany
  3. 3.Institute of Pharmaceutics and BiopharmaceuticsHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  4. 4.Clinic for Nuclear MedicineRWTH Aachen UniversityAachenGermany
  5. 5.Institut für Physikalische BiologieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations