Pharmaceutical Research

, Volume 33, Issue 1, pp 177–185 | Cite as

In vivo Functional Evaluation of Increased Brain Delivery of the Opioid Peptide DAMGO by Glutathione-PEGylated Liposomes

  • Annika Lindqvist
  • Jaap Rip
  • Joan van Kregten
  • Pieter J Gaillard
  • Margareta Hammarlund-UdenaesEmail author
Research Paper



The purpose of this study was to evaluate formulation factors causing improvement in brain delivery of a small peptide after encapsulation into a targeted nanocarrier in vivo.


The evaluation was performed in rats using microdialysis, which enabled continuous sampling of the released drug in both the brain (striatum) and blood. Uptake in brain could thereby be studied in terms of therapeutically active, released drug.


We found that encapsulation of the peptide DAMGO in fast-releasing polyethylene glycol (PEG)ylated liposomes, either with or without the specific brain targeting ligand glutathione (GSH), doubled the uptake of DAMGO into the rat brain. The increased brain delivery was observed only when the drug was encapsulated into the liposomes, thus excluding any effects of the liposomes themselves on the blood–brain barrier integrity as a possible mechanism. The addition of a GSH coating on the liposomes did not result in an additional increase in DAMGO concentrations in the brain, in contrast to earlier studies on GSH coating. This may be caused by differences in the characteristics of the encapsulated compounds and the composition of the liposome formulations.


We were able to show that encapsulation into PEGylated liposomes of a peptide with limited brain delivery could double the drug uptake into the brain without using a specific brain targeting ligand.


blood–brain barrier brain delivery liposomes microdialysis opioid peptide 





Blood–brain barrier


Bovine serum albumin


Egg-yolk phosphatidylcholine




Hydrogenated soy phosphatidylcholine


Polydispersity index


Polyethylene glycol


Unbound brain-to-plasma concentration ratio at steady state


Acknowledgments and Disclosures

The authors acknowledge the excellent technical assistance of Britt Jansson and Jessica Dunhall (Department of Pharmaceutical Biosciences, Uppsala University, Sweden) and editorial assistance of Corine Visser (to-BBB technologies BV, Leiden, the Netherlands). The Department of Pharmaceutical Sciences at Uppsala University carried the cost for the animal work and analytics and to-BBB technologies provided the DAMGO infusion solutions. Drs J Rip, J van Kregten and PJ Gaillard were employees of to-BBB technologies BV and Dr. Gaillard held founder shares in to-BBB holding BV.

Compliance with Ethical Standards

All procedures involving animals performed in the study were in accordance with the ethical standards of the institution and approved by the Uppsala Regional Animal Ethics Committee, Uppsala, Sweden (C328/10).


  1. 1.
    de Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood–brain barrier. Clin Pharmacokinet. 2007;46(7):553–76.PubMedCrossRefGoogle Scholar
  2. 2.
    Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis. 2010;37(1):48–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Venditto VJ, Szoka Jr FC. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev. 2013;65(1):80–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Handa BK, Land AC, Lord JA, Morgan BA, Rance MJ, Smith CF. Analogues of beta-LPH61-64 possessing selective agonist activity at mu-opiate receptors. Eur J Pharmacol. 1981;70(4):531–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Khrasani M, Spetea M, Friedmann T, Riba P, Kiraly K, Schmidhammer H, et al. DAMGO and 6beta-glycine substituted 14-O-methyloxymorphone but not morphine show peripheral, preemptive antinociception after systemic administration in a mouse visceral pain model and high intrinsic efficacy in the isolated rat vas deferens. Brain Res Bull. 2007;74(5):369–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Fiori A, Cardelli P, Negri L, Savi MR, Strom R, Erspamer V. Deltorphin transport across the blood–brain barrier. Proc Natl Acad Sci U S A. 1997;94(17):9469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lindqvist A, Rip J, Gaillard PJ, Bjorkman S, Hammarlund-Udenaes M. Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study. Mol Pharm. 2013;10(5):1533–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? advanced drug delivery reviews. 2013. Epub 2013/08/29.Google Scholar
  10. 10.
    Lichota J, Skjorringe T, Thomsen LB, Moos T. Macromolecular drug transport into the brain using targeted therapy. J Neurochem. 2010;113(1):1–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Kannan R, Kuhlenkamp JF, Jeandidier E, Trinh H, Ookhtens M, Kaplowitz N. Evidence for carrier-mediated transport of glutathione across the blood–brain barrier in the rat. J Clin Invest. 1990;85(6):2009–13.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kannan R, Chakrabarti R, Tang D, Kim KJ, Kaplowitz N. GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na + − dependent GSH transport in HCEC. Brain Res. 2000;852(2):374–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Rip J, Chen L, Hartman R, van den Heuvel A, Reijerkerk A, van Kregten J, et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats. J Drug Target. 2014;22(5):460–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release: Off J Control Release Soc. 2012;164(3):364–9.CrossRefGoogle Scholar
  15. 15.
    Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One. 2014;9(1):e82331.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Birngruber T, Raml R, Gladdines W, Gatschelhofer C, Gander E, Ghosh A, et al. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,((R))/Doxil((R))--a cerebral open flow microperfusion pilot study. J Pharm Sci. 2014;103(7):1945–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Gaillard PJ, Visser CC, Appeldoorn CCM, Rip J. Enhanced brain drug delivery: safely crossing the blood–brain barrier. Drug Discov Today: Technol. 2012;9(2):e155–e60.CrossRefGoogle Scholar
  18. 18.
    Barenholz Y. Doxil® — The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Lindqvist A, Jansson B, Hammarlund-Udenaes M. Quantitative analysis of the opioid peptide DAMGO in rat plasma and microdialysis samples using liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;900:11–7.CrossRefGoogle Scholar
  20. 20.
    Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M. Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p, u), and K(p, uu). Drug Metab Dispos: Biol Fate Chem. 2006;34(2):318–23.CrossRefGoogle Scholar
  22. 22.
    Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood–brain barrier (BBB). J Microencapsul. 2013;30(1):49–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Kopecka J, Salzano G, Campia I, Lusa S, Ghigo D, De Rosa G, et al. Insights in the chemical components of liposomes responsible for P-glycoprotein inhibition. Nanomed: Nanotechnol Biol Med. 2014;10(1):77–87.CrossRefGoogle Scholar
  24. 24.
    Kannan R, Mittur A, Bao Y, Tsuruo T, Kaplowitz N. GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. J Neurochem. 1999;73(1):390–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455–72. PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151(2):201–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Ulmansky R, Turjeman K, Baru M, Katzavian G, Harel M, Sigal A, et al. Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. J Control Release: Off J Control Release Soc. 2012;160(2):299–305.CrossRefGoogle Scholar
  29. 29.
    Sarkadi B, Muller M, Homolya L, Hollo Z, Seprodi J, Germann UA, et al. Interaction of bioactive hydrophobic peptides with the human multidrug transporter. FASEB J: Off Publ Fed Am Soc Exp Biol. 1994;8(10):766–70.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Annika Lindqvist
    • 1
  • Jaap Rip
    • 2
  • Joan van Kregten
    • 2
  • Pieter J Gaillard
    • 2
  • Margareta Hammarlund-Udenaes
    • 1
    Email author
  1. 1.Department of Pharmaceutical Biosciences, Translational PKPD Research Group, Associate member of SciLife LabUppsala UniversityUppsalaSweden
  2. technologies BVLeidenThe Netherlands

Personalised recommendations