Pharmaceutical Research

, Volume 32, Issue 8, pp 2727–2735 | Cite as

Hyaluronic Acid-Based Nanogels Produced by Microfluidics-Facilitated Self-Assembly Improves the Safety Profile of the Cationic Host Defense Peptide Novicidin

  • Jorrit J. Water
  • YongTae Kim
  • Morten J. Maltesen
  • Henrik Franzyk
  • Camilla Foged
  • Hanne M. Nielsen
Research Paper



Cationic host defence peptides constitute a promising class of therapeutic drug leads with a wide range of therapeutic applications, including anticancer therapy, immunomodulation, and antimicrobial activity. Although potent and efficacious, systemic toxicity and low chemical stability have hampered their commercial development. To overcome these challenges a novel nanogel-based drug delivery system was designed.


The peptide novicidin was self-assembled with an octenyl succinic anhydride-modified analogue of hyaluronic acid, and this formulation was optimized using a microfluidics-based quality-by-design approach.


By applying design-of-experiment it was demonstrated that the encapsulation efficiency of novicidin (15% to 71%) and the zeta potential (−24 to −57 mV) of the nanogels could be tailored by changing the preparation process parameters, with a maximum peptide loading of 36 ± 4%. The nanogels exhibited good colloidal stability under different ionic strength conditions and allowed complete release of the peptide over 14 days. Furthermore, self-assembly of novicidin with hyaluronic acid into nanogels significantly improved the safety profile at least five-fold and six-fold when tested in HUVECs and NIH 3T3 cells, respectively, whilst showing no loss of antimicrobial activity against Escherichia coli and Staphylococcus aureus.


Formulation in nanogels could be a viable approach to improve the safety profile of host defence peptides.


antimicrobial peptides hyaluronic acid hydrogel nanoparticles microfluidics nanogels 



Dynamic light scattering


Dulbecco’s modified Eagle’s medium


Design of experiment


Encapsulation efficiency


Fetal bovine serum


Hank’s balanced salt solution


Host defense peptides


Human umbilical vein endothelial cell


Minimum inhibitory concentration


Multiple linear regression


Nanoparticle tracking analysis


Octenyl succinic anhydride-modified hyaluronic acid


Transmission electron microscopy



The authors acknowledge Prof. Robert Langer at MIT for his generous support and discussion on the use of microfluidic devices. We also acknowledge Karina Juul Vissing, Thara Qais Hussein and Maria Læssøe Pedersen for their technical support. Pall Thor Ingvarsson, PhD, is acknowledged for assistance with the experimental design; The Danish Agency for Science and Technology and Innovation (DanCARD, grant no. 06-097075) for financial support, The Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen for providing access to imaging facilities and Adam Bohr, PhD, for his assistance. Lastly, Innovation Fund Denmark (041-2010-3) is acknowledged for co-financing the HPLC system.

Supplementary material

11095_2015_1658_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 31 kb)
11095_2015_1658_MOESM2_ESM.docx (34 kb)
ESM 2 (DOCX 34 kb)


  1. 1.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Huang W, Seo J, Willingham SB, Czyzewski AM, Gonzalgo ML, Weissman IL, et al. Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity. PLoS ONE. 2014;9:e90397.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:294.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol. 2013;4:321.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol. 2013;9:761–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Mayer ML, Blohmke CJ, Falsafi R, Fjell CD, Madera L, Turvey SE, et al. Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells. J Immunol. 2013;190:1227–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001;1:156–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol. 2007;2:1–33.Google Scholar
  10. 10.
    Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24:1551–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Van’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. Antimicrobial peptides: properties and applicability. Biol Chem. 2001;382:597–619.CrossRefGoogle Scholar
  12. 12.
    Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 2010;9:572–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan M, Ge J, Liu Z, Ouyang P. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J Am Chem Soc. 2006;128:11008–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Takahashi H, Sawada S, Akiyoshi K. Amphiphilic polysaccharide nanoballs: a new building block for nanogel biomedical engineering and artificial chaperones. ACS Nano. 2010;5:337–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.PubMedGoogle Scholar
  16. 16.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Capretto L, Cheng W, Hill M, Zhang X. Micromixing within microfluidic devices. Top Curr Chem. 2011;304:27–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Preparation of nanoparticles by continuous-flow microfluidics. J Nanoparticle Res. 2008;10:925–34.CrossRefGoogle Scholar
  19. 19.
    De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17:113–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Jeong JH, Park TG, Kim SH. Self-assembled and nanostructured siRNA delivery systems. Pharm Res. 2011;28:2072–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Balakrishnan VS, Vad BS, Otzen DE. Novicidin’s membrane permeabilizing activity is driven by membrane partitioning but not by helicity: a biophysical study of the impact of lipid charge and cholesterol. Biochim Biophys Acta. 2013;1834:996–1002.PubMedCrossRefGoogle Scholar
  22. 22.
    Dorosz J, Gofman Y, Kolusheva S, Otzen D, Ben-Tal N, Nielsen NC, et al. Membrane interactions of novicidin, a novel antimicrobial peptide: phosphatidylglycerol promotes bilayer insertion. J Phys Chem B. 2010;114:11053–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Gottlieb CT, Thomsen LE, Ingmer H, Mygind PH, Kristensen H-H, Gram L. Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol. 2008;8:205.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778:357–75.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Vandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280:22–35.PubMedCrossRefGoogle Scholar
  26. 26.
    Eenschooten C, Guillaumie F, Kontogeorgis GM, Stenby EH, Schwach-Abdellaoui K. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride–modified hyaluronic acid derivatives. Carbohydr Polym. 2010;79:597–605.CrossRefGoogle Scholar
  27. 27.
    Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv. 2010;7:681–703.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim Y, Lee Chung B, Ma M, Mulder WJM, Fayad ZA, Farokhzad OC, et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012;12:3587–91.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991;3:207–12.PubMedGoogle Scholar
  30. 30.
    CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically ; approved standard—ninth edition. CLSI document M07-A9. Wayne: Clinical and Laboratory Standards Institute; 2012.Google Scholar
  31. 31.
    Kim Y, Fay F, Cormode DP, Sanchez-Gaytan BL, Tang J, Hennessy EJ, et al. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano. 2013;7:9975–83.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Karayianni M, Pispas S, Chryssikos GD, Gionis V, Giatrellis S, Nounesis G. Complexation of lysozyme with poly(sodium(sulfamate-carboxylate)isoprene). Biomacromolecules. 2011;12:1697–706.PubMedCrossRefGoogle Scholar
  33. 33.
    Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L, et al. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides. 2012;33:18–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release. 2014;174:98–108.PubMedCrossRefGoogle Scholar
  35. 35.
    He M, Zhao Z, Yin L, Tang C, Yin C. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int J Pharm. 2009;373:165–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang W, Cheng Q, Guo S, Lin D, Huang P, Liu J, et al. Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid. Biomaterials. 2013;34:6495–503.PubMedCrossRefGoogle Scholar
  37. 37.
    Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 2013;334:338–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers. 2000;55:4–30.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jorrit J. Water
    • 1
  • YongTae Kim
    • 2
  • Morten J. Maltesen
    • 3
  • Henrik Franzyk
    • 4
  • Camilla Foged
    • 1
  • Hanne M. Nielsen
    • 1
  1. 1.Section for Biologics, Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
  2. 2.George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Biopharma Application DevelopmentNovozymes A/SBagsvaerdDenmark
  4. 4.Section for Natural Products Research, Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations