Pharmaceutical Research

, Volume 32, Issue 5, pp 1714–1726 | Cite as

Bridging Laboratory and Large Scale Production: Preparation and In Vitro-Evaluation of Photosensitizer-Loaded Nanocarrier Devices for Targeted Drug Delivery

  • Susanne Beyer
  • Li Xie
  • Susanna Gräfe
  • Vitali Vogel
  • Kerstin Dietrich
  • Arno Wiehe
  • Volker Albrecht
  • Werner Mäntele
  • Matthias G. WackerEmail author
Research Paper



Industrial production of nanosized drug delivery devices is still an obstacle to the commercialization of nanomedicines. This study encompasses the development of nanoparticles for peroral application in photodynamic therapy, optimization according to the selected product specifications, and the translation into a continuous flow process.


Polymeric nanoparticles were prepared by nanoprecipitation of Eudragit® RS 100 in presence and in absence of glycofurol. The photosensitizer temoporfin has been encapsulated into these carrier devices. Process parameters were optimized by means of a Design of Experiments approach and nanoparticles with optimal characteristics were manufactured by using microreactor technology. The efficacy was determined by means of cell culture models in A-253 cells.


Physicochemical properties of nanoparticles achieved by nanoprecipitation from ethanolic solutions were superior to those obtained from a method based upon glycofurol. Nanoencapsulation of temoporfin into the matrix significantly reduced toxicity of this compound, while the efficacy was maintained. The release profiles assured a sustained release at the site of action. Finally, the transfer to continuous flow technology was achieved.


By adjusting all process parameters, a potent formulation for application in the GI tract was obtained. The essential steps of process development and scale-up were part of this formulation development.


Design of Experiments Drug targeting Eudragit® RS 100 Nanoparticles Photodynamic therapy 



Active pharmaceutical ingredient


Analytical ultracentrifugation


Dynamic light scattering


Dulbecco’s Modified Eagle Medium


Design of Experiments


Fetal calf serum




Good manufacturing practice




Molecular weight cut-off


Process analytical technology


Polydispersity index


Photodynamic therapy


Polyethylene glycol


N-methyl dibenzopyrazine methyl sulphate


Standard deviation


Size exclusion chromatography


Scanning electron microscopy

SNS ratio

Solvent-to-non solvent ratio


Transmission electron microscopy


Sodium 3’-[(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid


Acknowledgments and Disclosures

The authors want to acknowledge Prof. Dr. Jennifer B. Dressman, Prof. Dr. Dieter Steinhilber, and Dr. Astrid Kahnt for their support and Evonik Industries AG for reagent supply.

This work has been supported by the Else Kröner-Fresenius Foundation (EKFS), Research Training Group Translational Research Innovation – Pharma (TRIP).


  1. 1.
    Barenholz Y. Doxil® - the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Lautenschlager C, Schmidt C, Lehr CM, Fischer D, Stallmach A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm. 2013;85(3 Pt A):578–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–93.CrossRefPubMedGoogle Scholar
  4. 4.
    Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175–87.CrossRefPubMedGoogle Scholar
  5. 5.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):1–4.Google Scholar
  6. 6.
    Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257(1–2):169–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998;150(5 Suppl):146–56.CrossRefGoogle Scholar
  8. 8.
    Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano letters. 2008;8(9):2906–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao C-X, He L, Qiao SZ, Middelberg AP. Nanoparticle synthesis in microreactors. Chemical Engineering Science. 2011;66(7):1463–79.CrossRefGoogle Scholar
  10. 10.
    Santos RJ, Sultan MA. State of the art of mini/μ Jet reactors. Chemical Engineering & Technology. 2013;36(6):937–49.CrossRefGoogle Scholar
  11. 11.
    Petschacher C, Eitzlmayr A, Besenhard M, Wagner J, Barthelmes J, Bernkop-Schnürch A, et al. Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polymer Chemistry. 2013;4(7):2342–52.CrossRefGoogle Scholar
  12. 12.
    Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol. 1992;55(1):145–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26(11):612–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Dougherty TJ. Photodynamic therapy (PDT) of malignant tumors. Crit Rev Oncol Hematol. 1984;2(2):83–116.CrossRefPubMedGoogle Scholar
  15. 15.
    Bodmeier R, Chen H, Tyle P, Jarosz P. Spontaneous formation of drug-containing acrylic nanoparticles. J Microencapsul. 1991;8(2):161–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Viehof A, Javot L, Beduneau A, Pellequer Y, Lamprecht A. Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int J Pharm. 2013;443(1–2):169–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Wacker M, Chen K, Preuss A, Possemeyer K, Roeder B, Langer K. Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties Int J Pharm. 2010;393(1–2):253–62.Google Scholar
  18. 18.
    Vogel V, Langer K, Balthasar S, Schuck P, Mächtle W, Haase W, et al. Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy. Analytical Ultracentrifugation VI: Springer; 2002. p. 31–36.Google Scholar
  19. 19.
    Bootz A, Vogel V, Schubert D, Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57(2):369–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Schuck P, Rossmanith P. Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers. 2000;54(5):328–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Porsch B, Hillang I, Karlsson A, Sundelof LO. Ion-exclusion controlled size-exclusion chromatography of methacrylic acid-methyl methacrylate copolymers. J Chromatogr A. 2000;872(1–2):91–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces. 2009;70(2):198–206.CrossRefPubMedGoogle Scholar
  23. 23.
    Wacker M, Zensi A, Kufleitner J, Ruff A, Schutz J, Stockburger T, et al. A toolbox for the upscaling of ethanolic human serum albumin (HSA) desolvation. Int J Pharm. 2011;414(1–2):225–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Wacker M. Nanocarriers for intravenous injection-the long hard road to the market. Int J Pharm. 2013;457(1):50–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Wacker MG. Nanotherapeutics-product development along the “nanomaterial” discussion. J Pharm Sci. 2014;103(3):777–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Moulari B, Pertuit D, Pellequer Y, Lamprecht A. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials. 2008;29(34):4554–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Tscharnuter W. Photon correlation spectroscopy in particle sizing. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chinchester: Wiley; 2000. p. 5469–85.Google Scholar
  29. 29.
    Ali ME, Lamprecht A. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation. Int J Pharm. 2013;456(1):135–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small. 2011;7(14):1919–31.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.33.CrossRefPubMedGoogle Scholar
  33. 33.
    Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir. 2005;21(4):1547–55.CrossRefPubMedGoogle Scholar
  34. 34.
    Jensen KF. Microreaction engineering—is small better? Chemical Engineering Science. 2001;56(2):293–303.CrossRefGoogle Scholar
  35. 35.
    Li W, Greener J, Voicu D, Kumacheva E. Multiple modular microfluidic (M 3) reactors for the synthesis of polymer particles. Lab on a Chip. 2009;9(18):2715–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Türeli AE, Penth B, Langguth P, Baumstümmler B. Vorrichtung und Verfahren zur Herstellung pharmazeutisch hochfeiner Partikel sowie zur Beschichtung solcher Partikel in Mikroreaktoren. German Patent Application DE102009008478A1; 2011.Google Scholar
  37. 37.
    Wu H, White M, Khan MA. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm. 2011;405(1–2):63–78.CrossRefPubMedGoogle Scholar
  38. 38.
    Yu LX, Lionberger RA, Raw AS, D’Costa R, Wu H, Hussain AS. Applications of process analytical technology to crystallization processes. Adv Drug Deliv Rev. 2004;56(3):349–69.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu H, Khan MA. Quality-by-design: an integrated process analytical technology approach to determine the nucleation and growth mechanisms during a dynamic pharmaceutical coprecipitation process. J Pharm Sci. 2011;100(5):1969–86.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Susanne Beyer
    • 1
  • Li Xie
    • 2
  • Susanna Gräfe
    • 3
  • Vitali Vogel
    • 2
  • Kerstin Dietrich
    • 1
  • Arno Wiehe
    • 3
  • Volker Albrecht
    • 3
  • Werner Mäntele
    • 2
  • Matthias G. Wacker
    • 4
    Email author
  1. 1.Institute of Pharmaceutical Technology,Goethe UniversityFrankfurt (Main)Germany
  2. 2.Institute of BiophysicsGoethe UniversityFrankfurt (Main)Germany
  3. 3.biolitec research GmbH,JenaGermany
  4. 4.Department of Pharmaceutical TechnologyFraunhofer-Institute for Molecular Biology and Applied Ecology IME, Project group for Translational Medicine & Pharmacology TMPFrankfurt (Main)Germany

Personalised recommendations