Pharmaceutical Research

, Volume 32, Issue 5, pp 1676–1693 | Cite as

Synthesis and Εvaluation of Αnticancer Αctivity in Cells of Novel Stoichiometric Pegylated Fullerene-Doxorubicin Conjugates

  • George E. Magoulas
  • Marina Bantzi
  • Danai Messari
  • Efstathia Voulgari
  • Chrisostomi Gialeli
  • Despoina Barbouri
  • Athanassios Giannis
  • Nikos K. Karamanos
  • Dionissios Papaioannou
  • Konstantinos AvgoustakisEmail author
Research Paper



To synthesize pegylated stoichiometrically and structurally well-defined conjugates of fullerene (C60) with doxorubicin (DOX) and investigate their antiproliferative effect against cancer cell lines.


Stoichiometric (1:1 and 1:2) pegylated conjugates of C60 with DOX were synthesized using the Prato reaction to create fulleropyrrolidines equipped with a carboxyl function for anchoring a polyethylene glycol (PEG) moiety and either a hydroxyl group for attaching one molecule of DOX or a terminal alkyne group for attaching two molecules of DOX through a click reaction. In both conjugates, the DOX moieties are held through a urethane-type bond. Drug release was studied in phosphate buffer (PBS, pH 7.4) and MCF-7 cancer cells lysate. The uptake of the conjugates by MCF-7 cancer cells and their intracellular localization were studied with fluorescence microscopy. The antiproliferative activity of the conjugates was investigated using the WST-1 test.


One or two DOX molecules were anchored on pegylated C60 particles to form DOX-C60-PEG conjugates. Drug liberation from the conjugates was significantly accelerated in the presence of tumor cell lysate compared to PBS. The conjugates could be internalized by MCF-7 cells. DOX from the conjugates exhibited much delayed, compared to free DOX, localization in the nucleus and antiproliferative activity.


Pegylated DOX-C60 conjugates (1:1) and (2:1) with well-defined structure were successfully synthesized and found to exhibit comparable, but with a delayed onset, antiproliferative activity with free DOX against MCF-7 cancer cells. The results obtained justify further investigation of the potential of these conjugates as anticancer nanomedicines.


antiproliferative activity conjugates doxorubicin fullerenes nanoparticles 



diisopropyl azodicarboxylate




Flash Column Chromatography


O-(benzotriazol-1-yl)-N,N,N΄,N΄-tetramethyluronium hexafluorophosphate




amino-polyethylene glycol monomethyl ether



We wish to thank Dr. N. Eilert, University of Leipsig, for guidance regarding the preliminary biological results, Dr. G. Tsivgoulis, and Dr. K. Andriopoulou, Department of Chemistry, University of Patras, for UV/vis spectra and TGA measurements and related comments, respectively.

Supplementary material

11095_2014_1566_MOESM1_ESM.doc (472 kb)
ESM 1 Extended structures and UV/Vis, TGA, and 1H-NMR data of final products, experimental procedures and characterization for intermediates as well as information on the solubility of compounds 26, 6c and of a non-pegylated fullerene-DOX conjugate are given. Also, the antiproliferative effect of blank (non-loaded with DOX) pegylated C60 particles (compound 26) is presented. (DOC 471 kb)


  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature. 1985;318:162–3.CrossRefGoogle Scholar
  2. 2.
    Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;38(11–12):913–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res. 2003;36(11):807–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Hosseini A, Sharifzadeh M, Rezayat SM, Hassanzadeh G, Hassani S, Baeeri M, et al. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy. Int J Nanomedicine. 2010;5:517–23.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Shultz MD, Wilson JD, Fuller CE, Zhang J, Dorn HC, Fatouros PP. Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology. 2011;261(1):136–43.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Isobe H, Nakanishi W, Tomita N, Inno S, Okayama H, Nakamura E. Nonviral gene delivery by tetraamino fullerene. Mol Pharm. 2006;3(2):124–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Fillmore HL, Shultz MD, Henderson SC, Cooper P, Broaddus WC, Chen ZJ, et al. Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors. Nanomedicine. 2011;6(3):449–58.CrossRefPubMedGoogle Scholar
  8. 8.
    Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano. 2009;3(9):2505–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Lu F, Haque SA, Yang S-T, Luo PG, Gu L, Kitaygorodskiy A, et al. Aqueous compatible fullerene-doxorubicin conjugates. J Phys Chem C. 2009;113(41):17768–73.CrossRefGoogle Scholar
  10. 10.
    Liu J-H, Cao L, Luo PG, Yang S-T, Lu F, Wang H, et al. Fullerene-conjugated doxorubicin in cells. ACS Appl Mater Interf. 2010;2(5):1384–9.CrossRefGoogle Scholar
  11. 11.
    Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ. A Fullerene − paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc. 2005;127(36):12508–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Partha R, Mitchell LR, Lyon JR, Joshi PP, Conyers JL. Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery. ACS Nano. 2008;2(9):1950–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Hirsch A, Brettreich M. In Fullerenes: Chemistry and Reactions. Weinheim: Wiley VCH; 2005.Google Scholar
  14. 14.
  15. 15.
    Burgess A, Vigneron S, Brioudes E, Labbé J-C, Lorca T, Castro A. Loss of human greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A. 2010;107:12564–9.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18:533–43.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell. 2011;22:1191–206.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Magoulas GE, Garnelis T, Athanassopoulos CM, Papaioannou D, Mattheolabakis G, Avgoustakis K, et al. Synthesis and antioxidative/anti-inflammatory activity of novel fullerene-polyamine conjugates. Tetrahedron. 2012;68(35):7041–9.CrossRefGoogle Scholar
  19. 19.
    Iehl J, Pereira de Freitas R, Nierengarten J-F. Click chemistry with fullerene derivatives. Tetrahedron Lett. 2008;49(25):4063–6.CrossRefGoogle Scholar
  20. 20.
    Heymann D. Solubility of fullerenes C60 and C70 in water. Lunar and Planetary Science. 1996;27:543–4.Google Scholar
  21. 21.
    Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al. Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294(1):116–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharm Rev. 2001;53(2):283–318.PubMedGoogle Scholar
  23. 23.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Milic D, Prato M. Fullerene unsymmetrical bis-adducts as models for novel peptidomimetics. Eur J Org Chem. 2010;3:476–83.CrossRefGoogle Scholar
  25. 25.
    Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Feher I, Forro L. Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv Funct Mater. 2006;16(1):120–8.CrossRefGoogle Scholar
  26. 26.
    Markovic Z, Todorovic-Markovic B, Kleut D, Nikolic N, Vranjes-Djuric S, Misirkic M, et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials. 2007;28(36):5437–48.CrossRefPubMedGoogle Scholar
  27. 27.
    Trpkovic A, Todorovic-Markovic B, Trajkovic V. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Arch Toxicol. 2012;86(12):1809–27.CrossRefPubMedGoogle Scholar
  28. 28.
    Zabirnyk O, Yezhelyev M, Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy. 2007;3(3):278–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • George E. Magoulas
    • 1
  • Marina Bantzi
    • 2
  • Danai Messari
    • 2
  • Efstathia Voulgari
    • 2
  • Chrisostomi Gialeli
    • 3
  • Despoina Barbouri
    • 3
  • Athanassios Giannis
    • 4
  • Nikos K. Karamanos
    • 3
  • Dionissios Papaioannou
    • 1
  • Konstantinos Avgoustakis
    • 2
    Email author
  1. 1.Laboratory of Synthetic Organic Chemistry, Department of ChemistryUniversity of PatrasPatrasGreece
  2. 2.Department of PharmacyUniversity of PatrasPatrasGreece
  3. 3.Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasPatrasGreece
  4. 4.Institut für Organische Chemie, Fakultät für Chemie und MineralogieUniversität LeipzigLeipzigGermany

Personalised recommendations