Pharmaceutical Research

, Volume 32, Issue 1, pp 103–121 | Cite as

Nanomagnetic Activation as a Way to Control the Efficacy of Nucleic Acid Delivery

  • Bartosz F. Grześkowiak
  • Yolanda Sánchez-Antequera
  • Edelburga Hammerschmid
  • Markus Döblinger
  • Dietmar Eberbeck
  • Anna Woźniak
  • Ryszard Słomski
  • Christian Plank
  • Olga Mykhaylyk
Research Paper



To explore the potential of magnetofection in delivering pDNA to primary mouse embryonic fibroblasts (PMEFs) and porcine fetal fibroblasts (PFFs) and investigate an effect of magnetic cell labeling on transfection efficacy.


The formulation and a dose of the magnetic vector were optimized. The efficacy of the procedure was quantified by vector internalization, transgene expression and cell iron loading upon specific labeling with Ab-conjugated magnetic beads or non-specific labeling with MNPs.


Up to sixty percent of PMEF and PFF cells were transfected at low pDNA doses of 4–16 pg pDNA/cell. Specific labeling of the PMEFs with MNPs, resulted in a 3- and 2-fold increase in pDNA internalization upon magnetofection and lipofection, respectively, that yielded a 2–4-fold increase in percent of transgene-expressing cells. Non-specific cell labeling had no effect on the efficacy of the reporter expression, despite the acquisition of similar magnetic moments per cell. In PFFs, specific magnetic labeling of the cell surface receptors inhibited internalization and transfection efficacy.


Magnetic labeling of cell-surface receptors combined with the application of an inhomogenous magnetic field (nanomagnetic activation) can affect the receptor-mediated internalization of delivery vectors and be used to control nucleic acid delivery to cells.


magnetic cell labeling magnetic nanoassemblies magnetic nanoparticles nanomagnetic activation nucleic acid delivery 



Counts per minutes


Dulbecco’s modified Eagle’s medium


Ethylenediaminetetraacetic acid


Fetal bovine serum


Induced pluripotent stem cells


Magnetic nanoparticles


Dulbecco’s phosphate buffered saline


Photon correlation spectroscopy






Porcine fetal fibroblasts


Primary mouse embryonic fibroblasts


Transmission electron microscopy


Tetraethyl orthosilicate


3-(trihydroxysilyl) propylmethylphosphonate



We are thankful to Mikołaj Grzeszkowiak for the work on transmission electron microscopy analysis of the microbeads. We gratefully acknowledge the support from the German Research Foundation through the DFG Research Unit FOR917 (Project PL 281/3-1, TR 408/6-1), from the German Federal Ministry of Education and Research through grants ZIM-KOOP ’STEP-MAG’, and from the Excellence Cluster ‘Nanosystems Initiative Munich’. The work was supported by the International PhD Projects Program of the Foundation for Polish Science operated within the Innovative Economy Operational Program (IE OP) 2007–2013 of the European Regional Development Fund.

Supplementary material

11095_2014_1448_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1423 kb)


  1. 1.
    Takahashiand K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefGoogle Scholar
  2. 2.
    Fujimura T, Takahagi Y, Shigehisa T, Nagashima H, Miyagawa S, Shirakura R, et al. Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells. Mol Reprod Dev. 2008;75:1372–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Greschand O, Altrogge L. Transfection of difficult-to-transfect primary mammalian cells. Methods Mol Biol. 2011;801:65–74.CrossRefGoogle Scholar
  4. 4.
    Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 2008;118:1571–7.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14:46–60.PubMedGoogle Scholar
  6. 6.
    Nakayama A, Sato M, Shinohara M, Matsubara S, Yokomine T, Akasaka E, et al. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the amaxa nucleofection system. Cloning Stem Cells. 2007;9:523–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross JW, Whyte JJ, Zhao J, Samuel M, Wells KD, Prather RS. Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res. 2010;19:611–20.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Fourikiand A, Dobson J. Nanomagnetic gene transfection for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts. Materials. 2013;6:255–64.CrossRefGoogle Scholar
  9. 9.
    Adler AF, Grigsby CL, Kulangara K, Wang H, Yasuda R, Leong KW. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids. 2012;1:e32.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev. 2011;63:1300–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Cui J, Cui H, Wang Y, Sun C, Li K, Ren H, et al. Application of PEI-modified magnetic nanoparticles as gene transfer vector for the genetic modification of animals. Adv Mater Sci Eng. 2012;2012:1–6.CrossRefGoogle Scholar
  12. 12.
    Lee CH, Kim JH, Lee HJ, Jeon K, Lim H, Choi H, et al. The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials. 2011;32:6683–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Mykhaylyk O, Steingotter A, Perea H, Aigner J, Botnar R, Plank C. Nucleic acid delivery to magnetically-labeled cells in a 2D array and at the luminal surface of cell culture tube and their detection by MRI. J Biomed Nanotechnol. 2009;5:692–706.PubMedCrossRefGoogle Scholar
  14. 14.
    Sanchez-Antequera Y, Mykhaylyk O, van Til NP, Cengizeroglu A, de Jong JH, Huston MW, et al. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117:e171–181.PubMedCrossRefGoogle Scholar
  15. 15.
    Chorny M, Fishbein I, Tengood JE, Adamo RF, Alferiev IS, Levy RJ. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB J. 2013;27:2198–206.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc. 2007;2:2391–411.PubMedCrossRefGoogle Scholar
  17. 17.
    Mykhaylyk O, Sobisch T, Almstatter I, Sanchez-Antequera Y, Brandt S, Anton M, et al. Silica-iron oxide magnetic nanoparticles modified for gene delivery: a search for optimum and quantitative criteria. Pharm Res. 2012;29:1344–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Sanchez-Antequera Y, Mykhaylyk O, Thalhammer S, Plank C. Gene delivery to jurkat T cells using non-viral vectors associated with magnetic nanoparticles. Int J Biomed Nanosci Nanotechnol. 2010;1:202–29.CrossRefGoogle Scholar
  19. 19.
    Torranceand JD, Bothwell TH. Tissue iron stores. In: JD C, editor. Methods in hematology: iron. New York: Churchill Livingstone; 1981. p. 90–115.Google Scholar
  20. 20.
    Mykhaylyk O, Zelphati O, Rosenecker J, Plank C. siRNA delivery by magnetofection. Curr Opin Mol Ther. 2008;10:493–505.PubMedGoogle Scholar
  21. 21.
    Wilhelm C, Gazeau F, Bacri JC. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J Biophys Lett. 2002;31:118–25.CrossRefGoogle Scholar
  22. 22.
    Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials. 2012;33:256–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Dickens S, Van den Berge S, Hendrickx B, Verdonck K, Luttun A, Vranckx JJ. Nonviral transfection strategies for keratinocytes, fibroblasts, and endothelial progenitor cells for ex vivo gene transfer to skin wounds. Tissue Eng Part C Methods. 2010;16:1601–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 2010;10:9.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Richter A, Kurome M, Kessler B, Zakhartchenko V, Klymiuk N, Nagashima H, et al. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol. 2012;12:84.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Arbaband AS, Frank JA. Cellular MRI and its role in stem cell therapy. Regen Med. 2008;3:199–215.CrossRefGoogle Scholar
  27. 27.
    Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U S A. 2008;105:698–703.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kempeand H, Kempe M. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 2010;31:9499–510.CrossRefGoogle Scholar
  29. 29.
    Santiniand F, Keen JH. Endocytosis of activated receptors and clathrin-coated pit formation: deciphering the chicken or egg relationship. J Cell Biol. 1996;132:1025–36.CrossRefGoogle Scholar
  30. 30.
    Santini F, Marks MS, Keen JH. Endocytic clathrin-coated pit formation is independent of receptor internalization signal levels. Mol Biol Cell. 1998;9:1177–94.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bildirici L, Smith P, Tzavelas C, Horefti E, Rickwood D. Biotechniques: transfection of cells by immunoporation. Nature. 2000;405:298.PubMedGoogle Scholar
  32. 32.
    Tzavelas C, Bildirici L, Rickwood D. Production of stably transfected cell lines using immunoporation. Biotechniques. 2004;37:276−+.PubMedGoogle Scholar
  33. 33.
    Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2008;3:36–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee JH, Kim ES, Cho MH, Son M, Yeon SI, Shin JS, et al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew Chem-Int Ed. 2010;49:5698–702.CrossRefGoogle Scholar
  35. 35.
    Hughes S, McBain S, Dobson J, El Haj AJ. Selective activation of mechanosensitive ion channels using magnetic particles. J R Soc Interface. 2008;5:855–63.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Hu B, Haj AJ, Dobson J. Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci. 2013;14:19276–93.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nano. 2008;3:139–43.CrossRefGoogle Scholar
  38. 38.
    Luzio JP, Bright NA, Pryor PR. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans. 2007;35:1088–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoffmann C, Mazari E, Lallet S, Le Borgne R, Marchi V, Gosse C, et al. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat Nanotechnol. 2013;8:199–205.PubMedCrossRefGoogle Scholar
  40. 40.
    Dejardin T, de la Fuente J, del Pino P, Furlani EP, Mullin M, Smith CA, et al. Influence of both a static magnetic field and penetratin on magnetic nanoparticle delivery into fibroblasts. Nanomedicine. 2011;6:1719–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bartosz F. Grześkowiak
    • 1
    • 2
    • 3
  • Yolanda Sánchez-Antequera
    • 1
  • Edelburga Hammerschmid
    • 1
  • Markus Döblinger
    • 4
  • Dietmar Eberbeck
    • 5
  • Anna Woźniak
    • 2
  • Ryszard Słomski
    • 2
    • 3
  • Christian Plank
    • 1
  • Olga Mykhaylyk
    • 1
    • 6
  1. 1.Institute of Experimental Oncology and Therapy ResearchKLinikum rechts der Isar der Technischen Universität MünchenMunichGermany
  2. 2.The NanoBioMedical CentreAdam Mickiewicz UniversityPoznanPoland
  3. 3.Department of Biochemistry and BiotechnologyPoznań University of Life SciencesPoznanPoland
  4. 4.Department of ChemistryLudwig-Maximilians-Universität MünchenMunichGermany
  5. 5.Physikalisch-Technische Bundesanstalt Abbestraße 2-12BerlinGermany
  6. 6.Institute of Experimental Oncology and Therapy ResearchTechnische Universität MünchenMunichGermany

Personalised recommendations