Pharmaceutical Research

, Volume 31, Issue 12, pp 3404–3414 | Cite as

Oral Delivery of Glucagon Like Peptide-1 by a Recombinant Lactococcus lactis

  • Payal Agarwal
  • Pulkit Khatri
  • Blasé Billack
  • Woon-Kai Low
  • Jun Shao
Research Paper



To develop a live oral delivery system of Glucagon like peptide-1 (GLP-1), for the treatment of Type-2 Diabetes.


LL-pUBGLP-1, a recombinant Lactococcus lactis (L. lactis)) transformed with a plasmid vector encoding GLP-1 cDNA was constructed and was used as a delivery system. Secretion of rGLP-1 from LL-pUBGLP-1 was characterized by ELISA. The bioactivity of the rGLP-1 was examined for its insulinotropic activity on HIT-T15 cells. Transport of rGLP-1 across MDCK cell monolayer when delivered by LL-pUBGLP-1 was studied. The therapeutic effect of LL-pUBGLP-1 after oral administration was investigated in ZDF rats.


DNA sequencing and ELISA confirmed the successful construction of the LL-pUBGLP-1 and secretion of the active form of rGLP-1. In vitro insulinotropic studies demonstrated that LL-pUBGLP-1 could significantly (p < 0.05) stimulate HIT-T15 cells to secrete insulin as compared to the controls. When delivered by LL-pUBGLP-1, the GLP-1 transport rate across the MDCK cell monolayer was increased by eight times (p < 0.01) as compared to the free solution form. Oral administration of LL-pUBGLP-1 in ZDF rats resulted in a significant decrease (10–20%, p < 0.05) in blood glucose levels during 2–11 h post dosing and a significant increase in insulin AUC0-11h (2.5 times, p < 0.01) as compared to the free solution.


The present study demonstrates that L. lactis when genetically modified with a recombinant plasmid can be used for the oral delivery of GLP-1.


GLP-1 L. lactis normal flora oral protein delivery type-2 diabetes 



Glucagon like peptide-1

L. lactis

Lactococcus lactis sub sp. lactis


Lactococcus lactis transformed with pUB1000 plasmid


Lactococcus lactis transformed with pUBGLP-1 plasmid


M17 growth media supplemented with 5% glucose


Expression host plasmid vector


Recombinant plasmid with GLP-1 c-DNA


recombinant GLP-1 secreted extracellularly by LL-pUBGLP-1


Type 2 Diabetes mellitus


  1. 1.
    Perfetti R, Brown TA, Velikina R, Busselen S. Control of glucose homeostasis by incretin hormones. Diabetes Technol Ther. 1999;1(3):297–305.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Vilsboll T. On the role of the incretin hormones GIP and GLP-1 in the pathogenesis of Type 2 diabetes mellitus. Dan Med Bull. 2004;51(4):364–70.PubMedGoogle Scholar
  4. 4.
    Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138(1):159–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes. 2003;52(2):380–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Perry T, Greig NH. The glucagon-like peptides: a double-edged therapeutic sword? Trends Pharmacol Sci. 2003;24(7):377–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Mest HJ, Mentlein R. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia. 2005;48(4):616–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Mentlein R. Dipeptidyl-peptidase IV, (CD26)–role in the inactivation of regulatory peptides. Regul Pept. 1999;85(1):9–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case–control study. JAMA Intern Med. 2013;173(7):534–9.PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Bond A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Proc (Bayl Univ Med Cent). 2006;19(3):281–4.Google Scholar
  13. 13.
    Moriya H, Moriwaki C, Akimoto S, Yamaguchi K, Iwadare M. Studies on the passage of alpha-chymotrypsin across the intestine. Chem Pharm Bull (Tokyo). 1967;15(11):1662–8.CrossRefGoogle Scholar
  14. 14.
    Shao J, Kaushal G. Normal flora: living vehicles for non-invasive protein drug delivery. Int J Pharm. 2004;286(1–2):117–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Antolin J, Ciguenza R, Saluena I, Vazquez E, Hernandez J, Espinos D. Liver abscess caused by Lactococcus lactis cremoris: a new pathogen. Scand J Infect Dis. 2004;36(6–7):490–1.PubMedCrossRefGoogle Scholar
  16. 16.
    Shanahan F. Immunology. Therapeutic manipulation of gut flora. Science. 2000;289(5483):1311–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Buchelli-Ramirez HL, Alvarez-Alvarez C, Rojo-Alba S, Garcia-Clemente M, Cimadevilla-Suarez R, Pando-Sandoval A, et al. Necrotising pneumonia caused by Lactococcus lactis cremoris. Int J Tuberc Lung Dis. 2013;17(4):565–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaushal G, Trombetta L, Ochs RS, Shao J. Delivery of TEM beta-lactamase by gene-transformed Lactococcus lactis subsp. lactis through cervical cell monolayer. Int J Pharm. 2006;313(1–2):29–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A. Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol. 1997;179(9):3068–72.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Savijoki K, Kahala M, Palva A. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene. 1997;186(2):255–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol. 2001;67(9):4119–27.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Brashears MM, Galyean ML, Loneragan GH, Mann JE, Killinger-Mann K. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Prot. 2003;66(5):748–54.PubMedGoogle Scholar
  23. 23.
    Brashears MM, Jaroni D, Trimble J. Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J Food Prot. 2003;66(3):355–63.PubMedGoogle Scholar
  24. 24.
    Tannock GW. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 1997;15(7):270–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Gilbert C, Atlan D, Blanc B, Portailer R, Germond JE, Lapierre L, et al. A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus. J Bacteriol. 1996;178(11):3059–65.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Grangette C, Muller-Alouf H, Goudercourt D, Geoffroy MC, Turneer M, Mercenier A. Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infect Immun. 2001;69(3):1547–53.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Scheppler L, Vogel M, Marti P, Muller L, Miescher SM, Stadler BM. Intranasal immunisation using recombinant Lactobacillus johnsonii as a new strategy to prevent allergic disease. Vaccine. 2005;23(9):1126–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Scheppler L, Vogel M, Zuercher AW, Zuercher M, Germond JE, Miescher SM, et al. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine. 2002;20(23–24):2913–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Shaw DM, Gaerthe B, Leer RJ, Van Der Stap JG, Smittenaar C, Heijne Den Bak-Glashouwer M, et al. Engineering the microflora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology. 2000;100(4):510–8.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zegers ND, Kluter E, van Der Stap H, van Dura E, van Dalen P, Shaw M, et al. Expression of the protective antigen of Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax. J Appl Microbiol. 1999;87(2):309–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21(7):785–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, et al. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun. 1998;66(7):3183–9.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Steidler L, Wells JM, Raeymaekers A, Vandekerckhove J, Fiers W, Remaut E. Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1995;61(4):1627–9.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Avall-Jaaskelainen S, Palva A. Secretion of biologically active porcine interleukin-2 by Lactococcus lactis. Vet Microbiol. 2006;115(1–3):278–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Fernandez A, Horn N, Wegmann U, Nicoletti C, Gasson MJ, Narbad A. Enhanced secretion of biologically active murine interleukin-12 by Lactococcus lactis. Appl Environ Microbiol. 2009;75(3):869–71.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Klijn N, Weerkamp AH, de Vos WM. Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol. 1995;61(7):2771–4.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Kaushal G, Shao J. Oral delivery of beta-lactamase by Lactococcus lactis subsp. lactis transformed with Plasmid ss80. Int J Pharm. 2006;312(1–2):90–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG, Jenkinson HF. Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol. 2005;55(5):1591–605.PubMedCrossRefGoogle Scholar
  40. 40.
    Wells JM, Wilson PW, Le Page RW. Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol. 1993;74(6):629–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Mukherjee T, Squillantea E, Gillespieb M, Shao J. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Deliv. 2004;11(1):11–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Cogburn JN, Donovan MG, Schasteen CS. A model of human small intestinal absorptive cells. 1. Transport barrier. Pharm Res. 1991;8(2):210–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 2008;6(5):349–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88(1):28–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv. 2005;2(5):843–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Kompella UB, Lee VH. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev. 2001;46(1–3):211–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Gomez-Orellana I. Strategies to improve oral drug bioavailability. Expert Opin Drug Deliv. 2005;2(3):419–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Payal Agarwal
    • 1
  • Pulkit Khatri
    • 2
  • Blasé Billack
    • 2
  • Woon-Kai Low
    • 2
  • Jun Shao
    • 2
  1. 1.School of PharmacyNotre Dame of Maryland UniversityBaltimoreUSA
  2. 2.Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesSt. John’s UniversityQueensUSA

Personalised recommendations