Pharmaceutical Research

, Volume 31, Issue 4, pp 969–982 | Cite as

Classification of the Crystallization Behavior of Amorphous Active Pharmaceutical Ingredients in Aqueous Environments

  • Bernard Van Eerdenbrugh
  • Shweta Raina
  • Yi-Ling Hsieh
  • Patrick Augustijns
  • Lynne S. Taylor
Research Paper



To classify the crystallization behavior of amorphous active pharmaceutical ingredients (API) exposed to aqueous environments.


A set of approximately 50 chemically and physically diverse active pharmaceutical ingredients (APIs) was selected for this study. Two experimental setups were employed to characterize the crystallization behavior of the amorphous API in an aqueous environment. For the first approach, precipitation, as evidenced by the development of turbidity, was induced using the solvent shift method, by mixing concentrated API solutions in DMSO with an aqueous buffer in a capillary. Subsequently, crystallization was monitored in situ over time using synchrotron radiation (simultaneous SAXS/WAXS beamline 12-ID-B at the Advanced Photon Source, Argonne National Laboratories, Argonne, IL). In the second approach, amorphous films were prepared by melt quenching; after adding buffer, crystallization was monitored with time using polarized light microscopy.


In general, the crystallization behavior of a given compound was similar irrespective of the experimental method employed. However, the crystallization behavior among different compounds varied significantly, ranging from immediate and complete crystallization to no observable crystallization over biorelevant time scales. Comparison of the observed behavior with previous studies of crystallization tendency in non-aqueous environments revealed that the crystallization tendency of individual APIs was somewhat similar regardless of the crystallization environment.


API properties, rather than the method by which amorphous materials are generated, tend to dictate crystallization behavior in aqueous media.


active pharmaceutical ingredient amorphous crystallization polarized light microscopy synchrotron radiation 


  1. 1.
    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Millard JW, Alvarez-Núňez FA, Yalkowsky SH. Solubilization by cosolvents—establishing useful constants for the log-linear model. Int J Pharm. 2002;245(1–2):153–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59(7):677–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.CrossRefPubMedGoogle Scholar
  8. 8.
    Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci. 2010;99(3):1254–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27(12):2704–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals, Part 3: Is maximum solubility advantage attainable and sustainable? J Pharm Sci. 2011;100(10):4349–56.CrossRefGoogle Scholar
  11. 11.
    Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res. 2012;29(10):2738–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Ilevbare GA, Taylor LS. Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly-water soluble drugs—implications for solubility enhancing formulations. Cryst Growth Des. 2013;13(4):1497–509.CrossRefGoogle Scholar
  13. 13.
    Zhou DL, Zhang GGZ, Law D, Grant DJW, Schmitt EA. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91(8):1863–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci. 2009;37(3–4):492–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Van Eerdenbrugh B, Taylor LS. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm. 2010;7(4):1328–37.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Eerdenbrugh B, Taylor LS. An ab initio polymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. CrystEngComm. 2011;13(20):6171–8.CrossRefGoogle Scholar
  17. 17.
    Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.PubMedGoogle Scholar
  18. 18.
    Van Eerdenbrugh B, Baird JA, Taylor LS. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation—classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci. 2010;99(9):3826–38.PubMedGoogle Scholar
  19. 19.
    Miyajima M, Koshika A, Okada J, Ikeda M, Nishimura K. Effect of polymer crystallinity on papaverine release from poly (L-lactic acid) matrix. J Control Release. 1997;49(2–3):207–15.CrossRefGoogle Scholar
  20. 20.
    Van Eerdenbrugh B, Stuyven B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, et al. Downscaling drug nanosuspension production: processing aspects and physicochemical characterization. AAPS PharmSciTech. 2009;10(1):44–53.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Van Eerdenbrugh B, Alonzo DE, Taylor LS. Influence of particle size on the ultraviolet spectrum of particulate-containing solutions: implications for in-situ concentration monitoring using UV/vis fiber-optic probes. Pharm Res. 2011;28(7):1643–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Vandecruys R, Peeters J, Verreck G, Brewster ME. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm. 2007;342(1–2):168–75.CrossRefPubMedGoogle Scholar
  23. 23.
    Warren DB, Benameur H, Porter CJH, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18(10):704–31.CrossRefPubMedGoogle Scholar
  24. 24.
    Bevernage J, Forier T, Brouwers J, Tack J, Annaert P, Augustijns P. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol Pharm. 2011;8(2):564–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Alonzo DE, Gao Y, Zhou DL, Mo HP, Zhang GGZ, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100(8):3316–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Brick MC, Palmer HJ, Whitesides TH. Formation of colloidal dispersions of organic materials in aqueous media by solvent shifting. Langmuir. 2003;19(16):6367–80.CrossRefGoogle Scholar
  27. 27.
    McMahon LE, Timmins P, Williams AC, York P. Characterization of dihydrates prepared from carbamazepine polymorphs. J Pharm Sci. 1996;85(10):1064–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Krc J. Crystallographic properties of flufenamic acid. Microscope. 1977;25(1):31–45.Google Scholar
  29. 29.
    McConnell JF. 3′-Trifluoromethyldiphenylamine-2-carboxylic acid, C14H10F3NO2 flufenamic acid. Cryst Struct Commun. 1973;2:459–61.Google Scholar
  30. 30.
    Allen FH. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002;B58:380–8.CrossRefGoogle Scholar
  31. 31.
    Murthy HMK, Bhat TN, Vijayan M. Structural studies of analgesics and their interactions. 9. Structure of a new crystal form of 2-([3-(trifluoromethyl)phenyl]amino)benzoic acid (flufenamic acid). Acta Crystallogr. 1982;B38:315–7.CrossRefGoogle Scholar
  32. 32.
    Chen XM, Li TL, Morris KR, Byrn SR. Crystal packing and chemical reactivity of two polymorphs of flufenamic acid with ammonia. Mol Cryst Liq Cryst. 2002;381:121–31.CrossRefGoogle Scholar
  33. 33.
    Mullin JW. Crystallization. 4th ed. Oxford: Elsiever Butterworth-Heinemann; 2001.Google Scholar
  34. 34.
    Peeters J, Neeskens P, Tollenaere JP, Van Remoortere P, Brewster ME. Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4, and 7. J Pharm Sci. 2002;91(6):1414–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Yalkowsky SH, He Y. Handbook of aqueous solubility data. Boca Raton: CRC Press LLC; 2003.CrossRefGoogle Scholar
  36. 36.
    Alonzo DE, Zhang GGZ, Zhou DL, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.CrossRefPubMedGoogle Scholar
  37. 37.
    Greco K, Bogner R. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability. J Pharm Sci. 2012;101(9):2996–3018.CrossRefPubMedGoogle Scholar
  38. 38.
    Baird JA, Thomas LC, Aubuchon SR, Taylor LS. Evaluating the non-isothermal crystallization behavior of organic molecules from the undercooled melt state using rapid heat/cool calorimetry. CrystEngComm. 2013;15(1):111–9.CrossRefGoogle Scholar
  39. 39.
    Mahlin D, Ponnambalam S, Hockerfelt MH, Bergstrom CAS. Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mol Pharm. 2011;8(2):498–506.CrossRefPubMedGoogle Scholar
  40. 40.
    Yu L, Reutzel-Edens SM, Mitchell CA. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org Process Res Dev. 2000;4(5):396–402.CrossRefGoogle Scholar
  41. 41.
    Hursthouse MB, Huth LS, Threlfall TL. Why do organic compounds crystallise well or badly or ever so slowly? Why is crystallisation nevertheless such a good purification technique? Org Process Res Dev. 2009;13(6):1231–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bernard Van Eerdenbrugh
    • 1
    • 2
  • Shweta Raina
    • 1
  • Yi-Ling Hsieh
    • 1
    • 3
  • Patrick Augustijns
    • 2
  • Lynne S. Taylor
    • 1
  1. 1.Department of Industrial and Physical Pharmacy, College of PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.Drug Delivery and DispositionKU LeuvenLeuvenBelgium
  3. 3.Formulation Sciences, Allergan, Inc.IrvineUSA

Personalised recommendations